MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Structured version   Unicode version

Theorem htthlem 22422
Description: Lemma for htth 22423. The collection  K, which consists of functions  F ( z ) ( w )  =  <. w  |  T
( z ) >.  =  <. T ( w )  |  z >. for each  z in the unit ball, is a collection of bounded linear functions by ipblnfi 22359, so by the Uniform Boundedness theorem ubth 22377, there is a uniform bound  y on  ||  F ( x )  || for all  x in the unit ball. Then  |  T (
x )  |  ^
2  =  <. T ( x )  |  T
( x ) >.  =  F ( x ) (  T ( x ) )  <_  y  |  T ( x )  |, so  |  T ( x )  |  <_  y and 
T is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1  |-  X  =  ( BaseSet `  U )
htth.2  |-  P  =  ( .i OLD `  U
)
htth.3  |-  L  =  ( U  LnOp  U
)
htth.4  |-  B  =  ( U  BLnOp  U )
htthlem.5  |-  N  =  ( normCV `  U )
htthlem.6  |-  U  e. 
CHil OLD
htthlem.7  |-  W  = 
<. <.  +  ,  x.  >. ,  abs >.
htthlem.8  |-  ( ph  ->  T  e.  L )
htthlem.9  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )
htthlem.10  |-  F  =  ( z  e.  X  |->  ( w  e.  X  |->  ( w P ( T `  z ) ) ) )
htthlem.11  |-  K  =  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
)
Assertion
Ref Expression
htthlem  |-  ( ph  ->  T  e.  B )
Distinct variable groups:    y, w, F    x, w, z, K, y    w, N, x, y, z    w, P, z    w, W, x, y, z    ph, w, x, y, z    w, T, x, y, z    w, U, x, y, z    w, X, x, y, z
Allowed substitution hints:    B( x, y, z, w)    P( x, y)    F( x, z)    L( x, y, z, w)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2  |-  ( ph  ->  T  e.  L )
2 htthlem.6 . . . . . . . . . 10  |-  U  e. 
CHil OLD
32hlnvi 22396 . . . . . . . . 9  |-  U  e.  NrmCVec
4 htth.1 . . . . . . . . . . . . 13  |-  X  =  ( BaseSet `  U )
5 htth.3 . . . . . . . . . . . . 13  |-  L  =  ( U  LnOp  U
)
64, 4, 5lnof 22258 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  U  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> X )
73, 3, 6mp3an12 1270 . . . . . . . . . . 11  |-  ( T  e.  L  ->  T : X --> X )
81, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  T : X --> X )
98ffvelrnda 5872 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  ( T `  x )  e.  X )
10 htthlem.5 . . . . . . . . . 10  |-  N  =  ( normCV `  U )
114, 10nvcl 22150 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  ( N `  ( T `  x ) )  e.  RR )
123, 9, 11sylancr 646 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( N `  ( T `  x ) )  e.  RR )
138ffvelrnda 5872 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  X )  ->  ( T `  z )  e.  X )
14 htth.2 . . . . . . . . . . . . . . . . 17  |-  P  =  ( .i OLD `  U
)
15 hlph 22393 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  CHil OLD  ->  U  e.  CPreHil
OLD )
162, 15ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  U  e.  CPreHil
OLD
17 htthlem.7 . . . . . . . . . . . . . . . . 17  |-  W  = 
<. <.  +  ,  x.  >. ,  abs >.
18 eqid 2438 . . . . . . . . . . . . . . . . 17  |-  ( U 
BLnOp  W )  =  ( U  BLnOp  W )
19 eqid 2438 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  X  |->  ( w P ( T `  z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  z
) ) )
204, 14, 16, 17, 18, 19ipblnfi 22359 . . . . . . . . . . . . . . . 16  |-  ( ( T `  z )  e.  X  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  e.  ( U 
BLnOp  W ) )
2113, 20syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  X )  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  e.  ( U 
BLnOp  W ) )
22 htthlem.10 . . . . . . . . . . . . . . 15  |-  F  =  ( z  e.  X  |->  ( w  e.  X  |->  ( w P ( T `  z ) ) ) )
2321, 22fmptd 5895 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : X --> ( U 
BLnOp  W ) )
24 ffun 5595 . . . . . . . . . . . . . 14  |-  ( F : X --> ( U 
BLnOp  W )  ->  Fun  F )
2523, 24syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  F )
2625adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  Fun  F )
27 id 21 . . . . . . . . . . . . 13  |-  ( w  e.  K  ->  w  e.  K )
28 htthlem.11 . . . . . . . . . . . . 13  |-  K  =  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
)
2927, 28syl6eleq 2528 . . . . . . . . . . . 12  |-  ( w  e.  K  ->  w  e.  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
) )
30 fvelima 5780 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  w  e.  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
) )  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w )
3126, 29, 30syl2an 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  w  e.  K )  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w )
3231ex 425 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
w  e.  K  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w ) )
33 fveq2 5730 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( N `  z )  =  ( N `  y ) )
3433breq1d 4224 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
( N `  z
)  <_  1  <->  ( N `  y )  <_  1
) )
3534elrab 3094 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e.  X  |  ( N `
 z )  <_ 
1 }  <->  ( y  e.  X  /\  ( N `  y )  <_  1 ) )
36 fveq2 5730 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  ( T `  z )  =  ( T `  y ) )
3736oveq2d 6099 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  y  ->  (
w P ( T `
 z ) )  =  ( w P ( T `  y
) ) )
3837mpteq2dv 4298 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  y  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  y ) ) ) )
394hlex 22402 . . . . . . . . . . . . . . . . . . . . 21  |-  X  e. 
_V
4039mptex 5968 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  X  |->  ( w P ( T `  y ) ) )  e.  _V
4138, 22, 40fvmpt 5808 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  X  ->  ( F `  y )  =  ( w  e.  X  |->  ( w P ( T `  y
) ) ) )
4241fveq1d 5732 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  X  ->  (
( F `  y
) `  x )  =  ( ( w  e.  X  |->  ( w P ( T `  y ) ) ) `
 x ) )
43 oveq1 6090 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  x  ->  (
w P ( T `
 y ) )  =  ( x P ( T `  y
) ) )
44 eqid 2438 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  X  |->  ( w P ( T `  y ) ) )  =  ( w  e.  X  |->  ( w P ( T `  y
) ) )
45 ovex 6108 . . . . . . . . . . . . . . . . . . 19  |-  ( x P ( T `  y ) )  e. 
_V
4643, 44, 45fvmpt 5808 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  X  ->  (
( w  e.  X  |->  ( w P ( T `  y ) ) ) `  x
)  =  ( x P ( T `  y ) ) )
4742, 46sylan9eqr 2492 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( F `  y ) `  x
)  =  ( x P ( T `  y ) ) )
4847ad2ant2lr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( F `
 y ) `  x )  =  ( x P ( T `
 y ) ) )
49 htthlem.9 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )
50 rsp2 2770 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  X  A. y  e.  X  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y )  ->  (
( x  e.  X  /\  y  e.  X
)  ->  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) ) )
5149, 50syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  X )  ->  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) ) )
5251impl 605 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) )
5352adantrr 699 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( x P ( T `  y
) )  =  ( ( T `  x
) P y ) )
5448, 53eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( F `
 y ) `  x )  =  ( ( T `  x
) P y ) )
5554fveq2d 5734 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( F `  y
) `  x )
)  =  ( abs `  ( ( T `  x ) P y ) ) )
56 simpl 445 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  X  /\  ( N `  y )  <_  1 )  -> 
y  e.  X )
574, 14dipcl 22213 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X  /\  y  e.  X )  ->  (
( T `  x
) P y )  e.  CC )
583, 57mp3an1 1267 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  x
)  e.  X  /\  y  e.  X )  ->  ( ( T `  x ) P y )  e.  CC )
599, 56, 58syl2an 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( T `
 x ) P y )  e.  CC )
6059abscld 12240 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  e.  RR )
6112adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  ( T `  x ) )  e.  RR )
624, 10nvcl 22150 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  ( N `  y )  e.  RR )
633, 62mpan 653 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  X  ->  ( N `  y )  e.  RR )
6463ad2antrl 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  y )  e.  RR )
6561, 64remulcld 9118 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  e.  RR )
664, 10, 14, 16sii 22357 . . . . . . . . . . . . . . . 16  |-  ( ( ( T `  x
)  e.  X  /\  y  e.  X )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( ( N `  ( T `  x ) )  x.  ( N `  y
) ) )
679, 56, 66syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( ( N `  ( T `  x ) )  x.  ( N `  y
) ) )
68 1re 9092 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
6968a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  1  e.  RR )
704, 10nvge0 22165 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  0  <_  ( N `  ( T `  x )
) )
713, 9, 70sylancr 646 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  X )  ->  0  <_  ( N `  ( T `  x )
) )
7212, 71jca 520 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  (
( N `  ( T `  x )
)  e.  RR  /\  0  <_  ( N `  ( T `  x ) ) ) )
7372adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  e.  RR  /\  0  <_ 
( N `  ( T `  x )
) ) )
74 simprr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  y )  <_  1
)
75 lemul2a 9867 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N `  y )  e.  RR  /\  1  e.  RR  /\  ( ( N `  ( T `  x ) )  e.  RR  /\  0  <_  ( N `  ( T `  x ) ) ) )  /\  ( N `  y )  <_  1 )  -> 
( ( N `  ( T `  x ) )  x.  ( N `
 y ) )  <_  ( ( N `
 ( T `  x ) )  x.  1 ) )
7664, 69, 73, 74, 75syl31anc 1188 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  <_  (
( N `  ( T `  x )
)  x.  1 ) )
7761recnd 9116 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  ( T `  x ) )  e.  CC )
7877mulid1d 9107 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  1 )  =  ( N `  ( T `
 x ) ) )
7976, 78breqtrd 4238 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  <_  ( N `  ( T `  x ) ) )
8060, 65, 61, 67, 79letrd 9229 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( N `  ( T `  x
) ) )
8155, 80eqbrtrd 4234 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( F `  y
) `  x )
)  <_  ( N `  ( T `  x
) ) )
8235, 81sylan2b 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  { z  e.  X  |  ( N `  z )  <_  1 } )  ->  ( abs `  ( ( F `
 y ) `  x ) )  <_ 
( N `  ( T `  x )
) )
83 fveq1 5729 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  =  w  ->  (
( F `  y
) `  x )  =  ( w `  x ) )
8483fveq2d 5734 . . . . . . . . . . . . 13  |-  ( ( F `  y )  =  w  ->  ( abs `  ( ( F `
 y ) `  x ) )  =  ( abs `  (
w `  x )
) )
8584breq1d 4224 . . . . . . . . . . . 12  |-  ( ( F `  y )  =  w  ->  (
( abs `  (
( F `  y
) `  x )
)  <_  ( N `  ( T `  x
) )  <->  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) ) )
8682, 85syl5ibcom 213 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  { z  e.  X  |  ( N `  z )  <_  1 } )  ->  (
( F `  y
)  =  w  -> 
( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
8786rexlimdva 2832 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  ( E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w  ->  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) ) )
8832, 87syld 43 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
w  e.  K  -> 
( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
8988ralrimiv 2790 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  A. w  e.  K  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) )
90 breq2 4218 . . . . . . . . . 10  |-  ( z  =  ( N `  ( T `  x ) )  ->  ( ( abs `  ( w `  x ) )  <_ 
z  <->  ( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
9190ralbidv 2727 . . . . . . . . 9  |-  ( z  =  ( N `  ( T `  x ) )  ->  ( A. w  e.  K  ( abs `  ( w `  x ) )  <_ 
z  <->  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  ( N `  ( T `  x ) ) ) )
9291rspcev 3054 . . . . . . . 8  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  ( N `  ( T `  x ) ) )  ->  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z )
9312, 89, 92syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z )
9493ralrimiva 2791 . . . . . 6  |-  ( ph  ->  A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  z )
95 imassrn 5218 . . . . . . . . 9  |-  ( F
" { z  e.  X  |  ( N `
 z )  <_ 
1 } )  C_  ran  F
9628, 95eqsstri 3380 . . . . . . . 8  |-  K  C_  ran  F
97 frn 5599 . . . . . . . . 9  |-  ( F : X --> ( U 
BLnOp  W )  ->  ran  F 
C_  ( U  BLnOp  W ) )
9823, 97syl 16 . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( U  BLnOp  W ) )
9996, 98syl5ss 3361 . . . . . . 7  |-  ( ph  ->  K  C_  ( U  BLnOp  W ) )
100 hlobn 22392 . . . . . . . . 9  |-  ( U  e.  CHil OLD  ->  U  e. 
CBan )
1012, 100ax-mp 8 . . . . . . . 8  |-  U  e. 
CBan
10217cnnv 22170 . . . . . . . 8  |-  W  e.  NrmCVec
10317cnnvnm 22175 . . . . . . . . 9  |-  abs  =  ( normCV `  W )
104 eqid 2438 . . . . . . . . 9  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
1054, 103, 104ubth 22377 . . . . . . . 8  |-  ( ( U  e.  CBan  /\  W  e.  NrmCVec  /\  K  C_  ( U  BLnOp  W ) )  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z  <->  E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y
) )
106101, 102, 105mp3an12 1270 . . . . . . 7  |-  ( K 
C_  ( U  BLnOp  W )  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  ( w `  x
) )  <_  z  <->  E. y  e.  RR  A. w  e.  K  (
( U normOp OLD W
) `  w )  <_  y ) )
10799, 106syl 16 . . . . . 6  |-  ( ph  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z  <->  E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y
) )
10894, 107mpbid 203 . . . . 5  |-  ( ph  ->  E. y  e.  RR  A. w  e.  K  ( ( U normOp OLD W
) `  w )  <_  y )
109 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( x  e.  X  /\  ( N `
 x )  <_ 
1 ) )
110 fveq2 5730 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  ( N `  z )  =  ( N `  x ) )
111110breq1d 4224 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
( N `  z
)  <_  1  <->  ( N `  x )  <_  1
) )
112111elrab 3094 . . . . . . . . . . . . . 14  |-  ( x  e.  { z  e.  X  |  ( N `
 z )  <_ 
1 }  <->  ( x  e.  X  /\  ( N `  x )  <_  1 ) )
113109, 112sylibr 205 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  x  e.  {
z  e.  X  | 
( N `  z
)  <_  1 }
)
114 fdm 5597 . . . . . . . . . . . . . . . . . 18  |-  ( F : X --> ( U 
BLnOp  W )  ->  dom  F  =  X )
11523, 114syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  X )
116115eleq2d 2505 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  X ) )
117116biimpar 473 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  F )
118 funfvima 5975 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( x  e.  {
z  e.  X  | 
( N `  z
)  <_  1 }  ->  ( F `  x
)  e.  ( F
" { z  e.  X  |  ( N `
 z )  <_ 
1 } ) ) )
11925, 118sylan 459 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  dom  F )  ->  (
x  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
120117, 119syldan 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
121120ad2ant2r 729 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( x  e. 
{ z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
122113, 121mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) )
123122, 28syl6eleqr 2529 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( F `  x )  e.  K
)
124 fveq2 5730 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  x )  ->  (
( U normOp OLD W
) `  w )  =  ( ( U
normOp OLD W ) `  ( F `  x ) ) )
125124breq1d 4224 . . . . . . . . . . . 12  |-  ( w  =  ( F `  x )  ->  (
( ( U normOp OLD W ) `  w
)  <_  y  <->  ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y )
)
126125rspcv 3050 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  K  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( ( U normOp OLD W
) `  ( F `  x ) )  <_ 
y ) )
127123, 126syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w )  <_  y  ->  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)
12812ad2ant2r 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  e.  RR )
129128, 128remulcld 9118 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  e.  RR )
13023ffvelrnda 5872 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  ( U  BLnOp  W ) )
13117cnnvba 22172 . . . . . . . . . . . . . . . . . . . 20  |-  CC  =  ( BaseSet `  W )
1324, 131, 104, 18nmblore 22289 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x )  e.  ( U  BLnOp  W )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
1333, 102, 132mp3an12 1270 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  ( U  BLnOp  W )  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
134130, 133syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  (
( U normOp OLD W
) `  ( F `  x ) )  e.  RR )
135134ad2ant2r 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
136135, 128remulcld 9118 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( (
( U normOp OLD W
) `  ( F `  x ) )  x.  ( N `  ( T `  x )
) )  e.  RR )
137 simplr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  y  e.  RR )
138137, 128remulcld 9118 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( y  x.  ( N `  ( T `  x )
) )  e.  RR )
139 fveq2 5730 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  x  ->  ( T `  z )  =  ( T `  x ) )
140139oveq2d 6099 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  x  ->  (
w P ( T `
 z ) )  =  ( w P ( T `  x
) ) )
141140mpteq2dv 4298 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  x  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  x ) ) ) )
14239mptex 5968 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  X  |->  ( w P ( T `  x ) ) )  e.  _V
143141, 22, 142fvmpt 5808 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  X  ->  ( F `  x )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) ) )
144143adantl 454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) ) )
145144fveq1d 5732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
) `  ( T `  x ) )  =  ( ( w  e.  X  |->  ( w P ( T `  x
) ) ) `  ( T `  x ) ) )
146 oveq1 6090 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( T `  x )  ->  (
w P ( T `
 x ) )  =  ( ( T `
 x ) P ( T `  x
) ) )
147 eqid 2438 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  X  |->  ( w P ( T `  x ) ) )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) )
148 ovex 6108 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( T `  x ) P ( T `  x ) )  e. 
_V
149146, 147, 148fvmpt 5808 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( T `  x )  e.  X  ->  (
( w  e.  X  |->  ( w P ( T `  x ) ) ) `  ( T `  x )
)  =  ( ( T `  x ) P ( T `  x ) ) )
1509, 149syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
( w  e.  X  |->  ( w P ( T `  x ) ) ) `  ( T `  x )
)  =  ( ( T `  x ) P ( T `  x ) ) )
151145, 150eqtrd 2470 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
) `  ( T `  x ) )  =  ( ( T `  x ) P ( T `  x ) ) )
152151ad2ant2r 729 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( F `  x ) `  ( T `  x
) )  =  ( ( T `  x
) P ( T `
 x ) ) )
1539ad2ant2r 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( T `  x )  e.  X
)
1544, 10, 14ipidsq 22211 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  (
( T `  x
) P ( T `
 x ) )  =  ( ( N `
 ( T `  x ) ) ^
2 ) )
1553, 153, 154sylancr 646 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( T `  x ) P ( T `  x ) )  =  ( ( N `  ( T `  x ) ) ^ 2 ) )
156152, 155eqtrd 2470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( F `  x ) `  ( T `  x
) )  =  ( ( N `  ( T `  x )
) ^ 2 ) )
157156fveq2d 5734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  =  ( abs `  ( ( N `  ( T `
 x ) ) ^ 2 ) ) )
158 resqcl 11451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  (
( N `  ( T `  x )
) ^ 2 )  e.  RR )
159 sqge0 11460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  0  <_  ( ( N `  ( T `  x ) ) ^ 2 ) )
160158, 159absidd 12227 . . . . . . . . . . . . . . . . . 18  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  ( abs `  ( ( N `
 ( T `  x ) ) ^
2 ) )  =  ( ( N `  ( T `  x ) ) ^ 2 ) )
161128, 160syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( N `  ( T `  x ) ) ^ 2 ) )  =  ( ( N `  ( T `
 x ) ) ^ 2 ) )
162128recnd 9116 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  e.  CC )
163162sqvald 11522 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) ) ^
2 )  =  ( ( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
164157, 161, 1633eqtrd 2474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  =  ( ( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
165130ad2ant2r 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( F `  x )  e.  ( U  BLnOp  W )
)
1664, 10, 103, 104, 18, 3, 102nmblolbi 22303 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  x
)  e.  ( U 
BLnOp  W )  /\  ( T `  x )  e.  X )  ->  ( abs `  ( ( F `
 x ) `  ( T `  x ) ) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
167165, 153, 166syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
168164, 167eqbrtrrd 4236 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
1693, 153, 70sylancr 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  ( N `  ( T `
 x ) ) )
170 simprr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y )
171135, 137, 128, 169, 170lemul1ad 9952 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( (
( U normOp OLD W
) `  ( F `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) )
172129, 136, 138, 168, 171letrd 9229 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) )
173 lemul1 9864 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR  /\  (
( N `  ( T `  x )
)  e.  RR  /\  0  <  ( N `  ( T `  x ) ) ) )  -> 
( ( N `  ( T `  x ) )  <_  y  <->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) ) )
174173biimprd 216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR  /\  (
( N `  ( T `  x )
)  e.  RR  /\  0  <  ( N `  ( T `  x ) ) ) )  -> 
( ( ( N `
 ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) )  ->  ( N `  ( T `  x ) )  <_  y )
)
1751743expia 1156 . . . . . . . . . . . . . . . 16  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR )  ->  ( ( ( N `
 ( T `  x ) )  e.  RR  /\  0  < 
( N `  ( T `  x )
) )  ->  (
( ( N `  ( T `  x ) )  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
176175expdimp 428 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N `  ( T `  x ) )  e.  RR  /\  y  e.  RR )  /\  ( N `  ( T `  x )
)  e.  RR )  ->  ( 0  < 
( N `  ( T `  x )
)  ->  ( (
( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
177128, 137, 128, 176syl21anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  ->  ( (
( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
178172, 177mpid 40 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  ->  ( N `  ( T `  x
) )  <_  y
) )
179 0re 9093 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
180179a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  e.  RR )
1814, 131, 18blof 22288 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x )  e.  ( U  BLnOp  W )
)  ->  ( F `  x ) : X --> CC )
1823, 102, 181mp3an12 1270 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  ( U  BLnOp  W )  ->  ( F `  x ) : X --> CC )
183130, 182syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x ) : X --> CC )
184183ad2ant2r 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( F `  x ) : X --> CC )
1854, 131, 104nmooge0 22270 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x ) : X --> CC )  ->  0  <_ 
( ( U normOp OLD W ) `  ( F `  x )
) )
1863, 102, 185mp3an12 1270 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x ) : X --> CC  ->  0  <_  ( ( U
normOp OLD W ) `  ( F `  x ) ) )
187184, 186syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  ( ( U normOp OLD W
) `  ( F `  x ) ) )
188180, 135, 137, 187, 170letrd 9229 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  y )
189 breq1 4217 . . . . . . . . . . . . . 14  |-  ( 0  =  ( N `  ( T `  x ) )  ->  ( 0  <_  y  <->  ( N `  ( T `  x
) )  <_  y
) )
190188, 189syl5ibcom 213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  =  ( N `  ( T `  x ) )  ->  ( N `  ( T `  x
) )  <_  y
) )
191 leloe 9163 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( N `  ( T `
 x ) )  e.  RR )  -> 
( 0  <_  ( N `  ( T `  x ) )  <->  ( 0  <  ( N `  ( T `  x ) )  \/  0  =  ( N `  ( T `  x )
) ) ) )
192179, 128, 191sylancr 646 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <_  ( N `  ( T `  x ) )  <->  ( 0  < 
( N `  ( T `  x )
)  \/  0  =  ( N `  ( T `  x )
) ) ) )
193169, 192mpbid 203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  \/  0  =  ( N `  ( T `  x )
) ) )
194178, 190, 193mpjaod 372 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  <_  y
)
195194expr 600 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  (
( ( U normOp OLD W ) `  ( F `  x )
)  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) )
196195adantrr 699 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) )
197127, 196syld 43 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w )  <_  y  ->  ( N `  ( T `  x )
)  <_  y )
)
198197expr 600 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  (
( N `  x
)  <_  1  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
199198com23 75 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
200199ralrimdva 2798 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. w  e.  K  (
( U normOp OLD W
) `  w )  <_  y  ->  A. x  e.  X  ( ( N `  x )  <_  1  ->  ( N `  ( T `  x
) )  <_  y
) ) )
201200reximdva 2820 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y  ->  E. y  e.  RR  A. x  e.  X  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
202108, 201mpd 15 . . . 4  |-  ( ph  ->  E. y  e.  RR  A. x  e.  X  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) )
203 eqid 2438 . . . . . 6  |-  ( U
normOp OLD U )  =  ( U normOp OLD U
)
2044, 4, 10, 10, 203, 3, 3nmobndi 22278 . . . . 5  |-  ( T : X --> X  -> 
( ( ( U
normOp OLD U ) `  T )  e.  RR  <->  E. y  e.  RR  A. x  e.  X  (
( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
2058, 204syl 16 . . . 4  |-  ( ph  ->  ( ( ( U
normOp OLD U ) `  T )  e.  RR  <->  E. y  e.  RR  A. x  e.  X  (
( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
206202, 205mpbird 225 . . 3  |-  ( ph  ->  ( ( U normOp OLD U ) `  T
)  e.  RR )
207 ltpnf 10723 . . 3  |-  ( ( ( U normOp OLD U
) `  T )  e.  RR  ->  ( ( U normOp OLD U ) `  T )  <  +oo )
208206, 207syl 16 . 2  |-  ( ph  ->  ( ( U normOp OLD U ) `  T
)  <  +oo )
209 htth.4 . . . 4  |-  B  =  ( U  BLnOp  U )
210203, 5, 209isblo 22285 . . 3  |-  ( ( U  e.  NrmCVec  /\  U  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD U
) `  T )  <  +oo ) ) )
2113, 3, 210mp2an 655 . 2  |-  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD U
) `  T )  <  +oo ) )
2121, 208, 211sylanbrc 647 1  |-  ( ph  ->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   {crab 2711    C_ wss 3322   <.cop 3819   class class class wbr 4214    e. cmpt 4268   dom cdm 4880   ran crn 4881   "cima 4883   Fun wfun 5450   -->wf 5452   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    +oocpnf 9119    < clt 9122    <_ cle 9123   2c2 10051   ^cexp 11384   abscabs 12041   NrmCVeccnv 22065   BaseSetcba 22067   normCVcnmcv 22071   .i OLDcdip 22198    LnOp clno 22243   normOp OLDcnmoo 22244    BLnOp cblo 22245   CPreHil OLDccphlo 22315   CBanccbn 22366   CHil
OLDchlo 22389
This theorem is referenced by:  htth  22423
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-dc 8328  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-sum 12482  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-cn 17293  df-cnp 17294  df-lm 17295  df-t1 17380  df-haus 17381  df-cmp 17452  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-fcls 17975  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-cfil 19210  df-cau 19211  df-cmet 19212  df-grpo 21781  df-gid 21782  df-ginv 21783  df-gdiv 21784  df-ablo 21872  df-vc 22027  df-nv 22073  df-va 22076  df-ba 22077  df-sm 22078  df-0v 22079  df-vs 22080  df-nmcv 22081  df-ims 22082  df-dip 22199  df-lno 22247  df-nmoo 22248  df-blo 22249  df-0o 22250  df-ph 22316  df-cbn 22367  df-hlo 22390
  Copyright terms: Public domain W3C validator