MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Unicode version

Theorem htthlem 21489
Description: Lemma for htth 21490. The collection  K, which consists of functions  F ( z ) ( w )  =  <. w  |  T
( z ) >.  =  <. T ( w )  |  z >. for each  z in the unit ball, is a collection of bounded linear functions by ipblnfi 21426, so by the Uniform Boundedness theorem ubth 21444, there is a uniform bound  y on  ||  F ( x )  || for all  x in the unit ball. Then  |  T (
x )  |  ^
2  =  <. T ( x )  |  T
( x ) >.  =  F ( x ) (  T ( x ) )  <_  y  |  T ( x )  |, so  |  T ( x )  |  <_  y and 
T is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1  |-  X  =  ( BaseSet `  U )
htth.2  |-  P  =  ( .i OLD `  U
)
htth.3  |-  L  =  ( U  LnOp  U
)
htth.4  |-  B  =  ( U  BLnOp  U )
htthlem.5  |-  N  =  ( normCV `  U )
htthlem.6  |-  U  e. 
CHil OLD
htthlem.7  |-  W  = 
<. <.  +  ,  x.  >. ,  abs >.
htthlem.8  |-  ( ph  ->  T  e.  L )
htthlem.9  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )
htthlem.10  |-  F  =  ( z  e.  X  |->  ( w  e.  X  |->  ( w P ( T `  z ) ) ) )
htthlem.11  |-  K  =  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
)
Assertion
Ref Expression
htthlem  |-  ( ph  ->  T  e.  B )
Distinct variable groups:    y, w, F    x, w, z, K, y    w, N, x, y, z    w, P, z    w, W, x, y, z    ph, w, x, y, z    w, T, x, y, z    w, U, x, y, z    w, X, x, y, z
Allowed substitution hints:    B( x, y, z, w)    P( x, y)    F( x, z)    L( x, y, z, w)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2  |-  ( ph  ->  T  e.  L )
2 htthlem.6 . . . . . . . . . 10  |-  U  e. 
CHil OLD
32hlnvi 21463 . . . . . . . . 9  |-  U  e.  NrmCVec
4 htth.1 . . . . . . . . . . . . 13  |-  X  =  ( BaseSet `  U )
5 htth.3 . . . . . . . . . . . . 13  |-  L  =  ( U  LnOp  U
)
64, 4, 5lnof 21325 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  U  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> X )
73, 3, 6mp3an12 1269 . . . . . . . . . . 11  |-  ( T  e.  L  ->  T : X --> X )
81, 7syl 17 . . . . . . . . . 10  |-  ( ph  ->  T : X --> X )
9 ffvelrn 5624 . . . . . . . . . 10  |-  ( ( T : X --> X  /\  x  e.  X )  ->  ( T `  x
)  e.  X )
108, 9sylan 459 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  ( T `  x )  e.  X )
11 htthlem.5 . . . . . . . . . 10  |-  N  =  ( normCV `  U )
124, 11nvcl 21217 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  ( N `  ( T `  x ) )  e.  RR )
133, 10, 12sylancr 646 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( N `  ( T `  x ) )  e.  RR )
14 ffvelrn 5624 . . . . . . . . . . . . . . . . 17  |-  ( ( T : X --> X  /\  z  e.  X )  ->  ( T `  z
)  e.  X )
158, 14sylan 459 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  z  e.  X )  ->  ( T `  z )  e.  X )
16 htth.2 . . . . . . . . . . . . . . . . 17  |-  P  =  ( .i OLD `  U
)
17 hlph 21460 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  CHil OLD  ->  U  e.  CPreHil
OLD )
182, 17ax-mp 10 . . . . . . . . . . . . . . . . 17  |-  U  e.  CPreHil
OLD
19 htthlem.7 . . . . . . . . . . . . . . . . 17  |-  W  = 
<. <.  +  ,  x.  >. ,  abs >.
20 eqid 2284 . . . . . . . . . . . . . . . . 17  |-  ( U 
BLnOp  W )  =  ( U  BLnOp  W )
21 eqid 2284 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  X  |->  ( w P ( T `  z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  z
) ) )
224, 16, 18, 19, 20, 21ipblnfi 21426 . . . . . . . . . . . . . . . 16  |-  ( ( T `  z )  e.  X  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  e.  ( U 
BLnOp  W ) )
2315, 22syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  X )  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  e.  ( U 
BLnOp  W ) )
24 htthlem.10 . . . . . . . . . . . . . . 15  |-  F  =  ( z  e.  X  |->  ( w  e.  X  |->  ( w P ( T `  z ) ) ) )
2523, 24fmptd 5645 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : X --> ( U 
BLnOp  W ) )
26 ffun 5356 . . . . . . . . . . . . . 14  |-  ( F : X --> ( U 
BLnOp  W )  ->  Fun  F )
2725, 26syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  F )
2827adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  Fun  F )
29 id 21 . . . . . . . . . . . . 13  |-  ( w  e.  K  ->  w  e.  K )
30 htthlem.11 . . . . . . . . . . . . 13  |-  K  =  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
)
3129, 30syl6eleq 2374 . . . . . . . . . . . 12  |-  ( w  e.  K  ->  w  e.  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
) )
32 fvelima 5535 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  w  e.  ( F " {
z  e.  X  | 
( N `  z
)  <_  1 }
) )  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w )
3328, 31, 32syl2an 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  w  e.  K )  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w )
3433ex 425 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
w  e.  K  ->  E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w ) )
35 fveq2 5485 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( N `  z )  =  ( N `  y ) )
3635breq1d 4034 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
( N `  z
)  <_  1  <->  ( N `  y )  <_  1
) )
3736elrab 2924 . . . . . . . . . . . . 13  |-  ( y  e.  { z  e.  X  |  ( N `
 z )  <_ 
1 }  <->  ( y  e.  X  /\  ( N `  y )  <_  1 ) )
38 fveq2 5485 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  y  ->  ( T `  z )  =  ( T `  y ) )
3938oveq2d 5835 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  y  ->  (
w P ( T `
 z ) )  =  ( w P ( T `  y
) ) )
4039mpteq2dv 4108 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  y  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  y ) ) ) )
414hlex 21469 . . . . . . . . . . . . . . . . . . . . 21  |-  X  e. 
_V
4241mptex 5707 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  X  |->  ( w P ( T `  y ) ) )  e.  _V
4340, 24, 42fvmpt 5563 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  X  ->  ( F `  y )  =  ( w  e.  X  |->  ( w P ( T `  y
) ) ) )
4443fveq1d 5487 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  X  ->  (
( F `  y
) `  x )  =  ( ( w  e.  X  |->  ( w P ( T `  y ) ) ) `
 x ) )
45 oveq1 5826 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  x  ->  (
w P ( T `
 y ) )  =  ( x P ( T `  y
) ) )
46 eqid 2284 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  X  |->  ( w P ( T `  y ) ) )  =  ( w  e.  X  |->  ( w P ( T `  y
) ) )
47 ovex 5844 . . . . . . . . . . . . . . . . . . 19  |-  ( x P ( T `  y ) )  e. 
_V
4845, 46, 47fvmpt 5563 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  X  ->  (
( w  e.  X  |->  ( w P ( T `  y ) ) ) `  x
)  =  ( x P ( T `  y ) ) )
4944, 48sylan9eqr 2338 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( F `  y ) `  x
)  =  ( x P ( T `  y ) ) )
5049ad2ant2lr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( F `
 y ) `  x )  =  ( x P ( T `
 y ) ) )
51 htthlem.9 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) )
52 rsp2 2606 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  X  A. y  e.  X  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y )  ->  (
( x  e.  X  /\  y  e.  X
)  ->  ( x P ( T `  y ) )  =  ( ( T `  x ) P y ) ) )
5351, 52syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  X )  ->  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) ) )
5453impl 605 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
x P ( T `
 y ) )  =  ( ( T `
 x ) P y ) )
5554adantrr 699 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( x P ( T `  y
) )  =  ( ( T `  x
) P y ) )
5650, 55eqtrd 2316 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( F `
 y ) `  x )  =  ( ( T `  x
) P y ) )
5756fveq2d 5489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( F `  y
) `  x )
)  =  ( abs `  ( ( T `  x ) P y ) ) )
58 simpl 445 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  X  /\  ( N `  y )  <_  1 )  -> 
y  e.  X )
594, 16dipcl 21280 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X  /\  y  e.  X )  ->  (
( T `  x
) P y )  e.  CC )
603, 59mp3an1 1266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  x
)  e.  X  /\  y  e.  X )  ->  ( ( T `  x ) P y )  e.  CC )
6110, 58, 60syl2an 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( T `
 x ) P y )  e.  CC )
6261abscld 11912 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  e.  RR )
6313adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  ( T `  x ) )  e.  RR )
644, 11nvcl 21217 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  NrmCVec  /\  y  e.  X )  ->  ( N `  y )  e.  RR )
653, 64mpan 653 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  X  ->  ( N `  y )  e.  RR )
6665ad2antrl 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  y )  e.  RR )
6763, 66remulcld 8858 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  e.  RR )
684, 11, 16, 18sii 21424 . . . . . . . . . . . . . . . 16  |-  ( ( ( T `  x
)  e.  X  /\  y  e.  X )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( ( N `  ( T `  x ) )  x.  ( N `  y
) ) )
6910, 58, 68syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( ( N `  ( T `  x ) )  x.  ( N `  y
) ) )
70 1re 8832 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
7170a1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  1  e.  RR )
724, 11nvge0 21232 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  0  <_  ( N `  ( T `  x )
) )
733, 10, 72sylancr 646 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  X )  ->  0  <_  ( N `  ( T `  x )
) )
7413, 73jca 520 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  (
( N `  ( T `  x )
)  e.  RR  /\  0  <_  ( N `  ( T `  x ) ) ) )
7574adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  e.  RR  /\  0  <_ 
( N `  ( T `  x )
) ) )
76 simprr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  y )  <_  1
)
77 lemul2a 9606 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N `  y )  e.  RR  /\  1  e.  RR  /\  ( ( N `  ( T `  x ) )  e.  RR  /\  0  <_  ( N `  ( T `  x ) ) ) )  /\  ( N `  y )  <_  1 )  -> 
( ( N `  ( T `  x ) )  x.  ( N `
 y ) )  <_  ( ( N `
 ( T `  x ) )  x.  1 ) )
7866, 71, 75, 76, 77syl31anc 1187 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  <_  (
( N `  ( T `  x )
)  x.  1 ) )
7963recnd 8856 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( N `  ( T `  x ) )  e.  CC )
8079mulid1d 8847 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  1 )  =  ( N `  ( T `
 x ) ) )
8178, 80breqtrd 4048 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( ( N `
 ( T `  x ) )  x.  ( N `  y
) )  <_  ( N `  ( T `  x ) ) )
8262, 67, 63, 69, 81letrd 8968 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( T `  x
) P y ) )  <_  ( N `  ( T `  x
) ) )
8357, 82eqbrtrd 4044 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  (
y  e.  X  /\  ( N `  y )  <_  1 ) )  ->  ( abs `  (
( F `  y
) `  x )
)  <_  ( N `  ( T `  x
) ) )
8437, 83sylan2b 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  { z  e.  X  |  ( N `  z )  <_  1 } )  ->  ( abs `  ( ( F `
 y ) `  x ) )  <_ 
( N `  ( T `  x )
) )
85 fveq1 5484 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  =  w  ->  (
( F `  y
) `  x )  =  ( w `  x ) )
8685fveq2d 5489 . . . . . . . . . . . . 13  |-  ( ( F `  y )  =  w  ->  ( abs `  ( ( F `
 y ) `  x ) )  =  ( abs `  (
w `  x )
) )
8786breq1d 4034 . . . . . . . . . . . 12  |-  ( ( F `  y )  =  w  ->  (
( abs `  (
( F `  y
) `  x )
)  <_  ( N `  ( T `  x
) )  <->  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) ) )
8884, 87syl5ibcom 213 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  { z  e.  X  |  ( N `  z )  <_  1 } )  ->  (
( F `  y
)  =  w  -> 
( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
8988rexlimdva 2668 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  ( E. y  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ( F `  y )  =  w  ->  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) ) )
9034, 89syld 42 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
w  e.  K  -> 
( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
9190ralrimiv 2626 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  A. w  e.  K  ( abs `  ( w `  x
) )  <_  ( N `  ( T `  x ) ) )
92 breq2 4028 . . . . . . . . . 10  |-  ( z  =  ( N `  ( T `  x ) )  ->  ( ( abs `  ( w `  x ) )  <_ 
z  <->  ( abs `  (
w `  x )
)  <_  ( N `  ( T `  x
) ) ) )
9392ralbidv 2564 . . . . . . . . 9  |-  ( z  =  ( N `  ( T `  x ) )  ->  ( A. w  e.  K  ( abs `  ( w `  x ) )  <_ 
z  <->  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  ( N `  ( T `  x ) ) ) )
9493rspcev 2885 . . . . . . . 8  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  ( N `  ( T `  x ) ) )  ->  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z )
9513, 91, 94syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z )
9695ralrimiva 2627 . . . . . 6  |-  ( ph  ->  A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  ( w `
 x ) )  <_  z )
97 imassrn 5024 . . . . . . . . 9  |-  ( F
" { z  e.  X  |  ( N `
 z )  <_ 
1 } )  C_  ran  F
9830, 97eqsstri 3209 . . . . . . . 8  |-  K  C_  ran  F
99 frn 5360 . . . . . . . . 9  |-  ( F : X --> ( U 
BLnOp  W )  ->  ran  F 
C_  ( U  BLnOp  W ) )
10025, 99syl 17 . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( U  BLnOp  W ) )
10198, 100syl5ss 3191 . . . . . . 7  |-  ( ph  ->  K  C_  ( U  BLnOp  W ) )
102 hlobn 21459 . . . . . . . . 9  |-  ( U  e.  CHil OLD  ->  U  e. 
CBan )
1032, 102ax-mp 10 . . . . . . . 8  |-  U  e. 
CBan
10419cnnv 21237 . . . . . . . 8  |-  W  e.  NrmCVec
10519cnnvnm 21242 . . . . . . . . 9  |-  abs  =  ( normCV `  W )
106 eqid 2284 . . . . . . . . 9  |-  ( U
normOp OLD W )  =  ( U normOp OLD W
)
1074, 105, 106ubth 21444 . . . . . . . 8  |-  ( ( U  e.  CBan  /\  W  e.  NrmCVec  /\  K  C_  ( U  BLnOp  W ) )  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z  <->  E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y
) )
108103, 104, 107mp3an12 1269 . . . . . . 7  |-  ( K 
C_  ( U  BLnOp  W )  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  ( w `  x
) )  <_  z  <->  E. y  e.  RR  A. w  e.  K  (
( U normOp OLD W
) `  w )  <_  y ) )
109101, 108syl 17 . . . . . 6  |-  ( ph  ->  ( A. x  e.  X  E. z  e.  RR  A. w  e.  K  ( abs `  (
w `  x )
)  <_  z  <->  E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y
) )
11096, 109mpbid 203 . . . . 5  |-  ( ph  ->  E. y  e.  RR  A. w  e.  K  ( ( U normOp OLD W
) `  w )  <_  y )
111 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( x  e.  X  /\  ( N `
 x )  <_ 
1 ) )
112 fveq2 5485 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  ( N `  z )  =  ( N `  x ) )
113112breq1d 4034 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
( N `  z
)  <_  1  <->  ( N `  x )  <_  1
) )
114113elrab 2924 . . . . . . . . . . . . . 14  |-  ( x  e.  { z  e.  X  |  ( N `
 z )  <_ 
1 }  <->  ( x  e.  X  /\  ( N `  x )  <_  1 ) )
115111, 114sylibr 205 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  x  e.  {
z  e.  X  | 
( N `  z
)  <_  1 }
)
116 fdm 5358 . . . . . . . . . . . . . . . . . 18  |-  ( F : X --> ( U 
BLnOp  W )  ->  dom  F  =  X )
11725, 116syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  F  =  X )
118117eleq2d 2351 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  X ) )
119118biimpar 473 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  F )
120 funfvima 5714 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( x  e.  {
z  e.  X  | 
( N `  z
)  <_  1 }  ->  ( F `  x
)  e.  ( F
" { z  e.  X  |  ( N `
 z )  <_ 
1 } ) ) )
12127, 120sylan 459 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  dom  F )  ->  (
x  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
122119, 121syldan 458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
x  e.  { z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
123122ad2ant2r 729 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( x  e. 
{ z  e.  X  |  ( N `  z )  <_  1 }  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) ) )
124115, 123mpd 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( F `  x )  e.  ( F " { z  e.  X  |  ( N `  z )  <_  1 } ) )
125124, 30syl6eleqr 2375 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( F `  x )  e.  K
)
126 fveq2 5485 . . . . . . . . . . . . 13  |-  ( w  =  ( F `  x )  ->  (
( U normOp OLD W
) `  w )  =  ( ( U
normOp OLD W ) `  ( F `  x ) ) )
127126breq1d 4034 . . . . . . . . . . . 12  |-  ( w  =  ( F `  x )  ->  (
( ( U normOp OLD W ) `  w
)  <_  y  <->  ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y )
)
128127rspcv 2881 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  K  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( ( U normOp OLD W
) `  ( F `  x ) )  <_ 
y ) )
129125, 128syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w )  <_  y  ->  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)
13013ad2ant2r 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  e.  RR )
131130, 130remulcld 8858 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  e.  RR )
132 ffvelrn 5624 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : X --> ( U 
BLnOp  W )  /\  x  e.  X )  ->  ( F `  x )  e.  ( U  BLnOp  W ) )
13325, 132sylan 459 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  e.  ( U  BLnOp  W ) )
13419cnnvba 21239 . . . . . . . . . . . . . . . . . . . 20  |-  CC  =  ( BaseSet `  W )
1354, 134, 106, 20nmblore 21356 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x )  e.  ( U  BLnOp  W )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
1363, 104, 135mp3an12 1269 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  ( U  BLnOp  W )  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
137133, 136syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  (
( U normOp OLD W
) `  ( F `  x ) )  e.  RR )
138137ad2ant2r 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  e.  RR )
139138, 130remulcld 8858 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( (
( U normOp OLD W
) `  ( F `  x ) )  x.  ( N `  ( T `  x )
) )  e.  RR )
140 simplr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  y  e.  RR )
141140, 130remulcld 8858 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( y  x.  ( N `  ( T `  x )
) )  e.  RR )
142 fveq2 5485 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  x  ->  ( T `  z )  =  ( T `  x ) )
143142oveq2d 5835 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  x  ->  (
w P ( T `
 z ) )  =  ( w P ( T `  x
) ) )
144143mpteq2dv 4108 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  x  ->  (
w  e.  X  |->  ( w P ( T `
 z ) ) )  =  ( w  e.  X  |->  ( w P ( T `  x ) ) ) )
14541mptex 5707 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  X  |->  ( w P ( T `  x ) ) )  e.  _V
146144, 24, 145fvmpt 5563 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  X  ->  ( F `  x )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) ) )
147146adantl 454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) ) )
148147fveq1d 5487 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
) `  ( T `  x ) )  =  ( ( w  e.  X  |->  ( w P ( T `  x
) ) ) `  ( T `  x ) ) )
149 oveq1 5826 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( T `  x )  ->  (
w P ( T `
 x ) )  =  ( ( T `
 x ) P ( T `  x
) ) )
150 eqid 2284 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  X  |->  ( w P ( T `  x ) ) )  =  ( w  e.  X  |->  ( w P ( T `  x
) ) )
151 ovex 5844 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( T `  x ) P ( T `  x ) )  e. 
_V
152149, 150, 151fvmpt 5563 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( T `  x )  e.  X  ->  (
( w  e.  X  |->  ( w P ( T `  x ) ) ) `  ( T `  x )
)  =  ( ( T `  x ) P ( T `  x ) ) )
15310, 152syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  X )  ->  (
( w  e.  X  |->  ( w P ( T `  x ) ) ) `  ( T `  x )
)  =  ( ( T `  x ) P ( T `  x ) ) )
154148, 153eqtrd 2316 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  X )  ->  (
( F `  x
) `  ( T `  x ) )  =  ( ( T `  x ) P ( T `  x ) ) )
155154ad2ant2r 729 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( F `  x ) `  ( T `  x
) )  =  ( ( T `  x
) P ( T `
 x ) ) )
15610ad2ant2r 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( T `  x )  e.  X
)
1574, 11, 16ipidsq 21278 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  NrmCVec  /\  ( T `  x )  e.  X )  ->  (
( T `  x
) P ( T `
 x ) )  =  ( ( N `
 ( T `  x ) ) ^
2 ) )
1583, 156, 157sylancr 646 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( T `  x ) P ( T `  x ) )  =  ( ( N `  ( T `  x ) ) ^ 2 ) )
159155, 158eqtrd 2316 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( F `  x ) `  ( T `  x
) )  =  ( ( N `  ( T `  x )
) ^ 2 ) )
160159fveq2d 5489 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  =  ( abs `  ( ( N `  ( T `
 x ) ) ^ 2 ) ) )
161 resqcl 11165 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  (
( N `  ( T `  x )
) ^ 2 )  e.  RR )
162 sqge0 11174 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  0  <_  ( ( N `  ( T `  x ) ) ^ 2 ) )
163161, 162absidd 11899 . . . . . . . . . . . . . . . . . 18  |-  ( ( N `  ( T `
 x ) )  e.  RR  ->  ( abs `  ( ( N `
 ( T `  x ) ) ^
2 ) )  =  ( ( N `  ( T `  x ) ) ^ 2 ) )
164130, 163syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( N `  ( T `  x ) ) ^ 2 ) )  =  ( ( N `  ( T `
 x ) ) ^ 2 ) )
165130recnd 8856 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  e.  CC )
166165sqvald 11236 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) ) ^
2 )  =  ( ( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
167160, 164, 1663eqtrd 2320 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  =  ( ( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
168133ad2ant2r 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( F `  x )  e.  ( U  BLnOp  W )
)
1694, 11, 105, 106, 20, 3, 104nmblolbi 21370 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  x
)  e.  ( U 
BLnOp  W )  /\  ( T `  x )  e.  X )  ->  ( abs `  ( ( F `
 x ) `  ( T `  x ) ) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
170168, 156, 169syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( abs `  ( ( F `  x ) `  ( T `  x )
) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
171167, 170eqbrtrrd 4046 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
( ( U normOp OLD W ) `  ( F `  x )
)  x.  ( N `
 ( T `  x ) ) ) )
1723, 156, 72sylancr 646 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  ( N `  ( T `
 x ) ) )
173 simprr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y )
174138, 140, 130, 172, 173lemul1ad 9691 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( (
( U normOp OLD W
) `  ( F `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) )
175131, 139, 141, 171, 174letrd 8968 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) )
176 lemul1 9603 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR  /\  (
( N `  ( T `  x )
)  e.  RR  /\  0  <  ( N `  ( T `  x ) ) ) )  -> 
( ( N `  ( T `  x ) )  <_  y  <->  ( ( N `  ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) ) ) )
177176biimprd 216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR  /\  (
( N `  ( T `  x )
)  e.  RR  /\  0  <  ( N `  ( T `  x ) ) ) )  -> 
( ( ( N `
 ( T `  x ) )  x.  ( N `  ( T `  x )
) )  <_  (
y  x.  ( N `
 ( T `  x ) ) )  ->  ( N `  ( T `  x ) )  <_  y )
)
1781773expia 1155 . . . . . . . . . . . . . . . 16  |-  ( ( ( N `  ( T `  x )
)  e.  RR  /\  y  e.  RR )  ->  ( ( ( N `
 ( T `  x ) )  e.  RR  /\  0  < 
( N `  ( T `  x )
) )  ->  (
( ( N `  ( T `  x ) )  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
179178expdimp 428 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N `  ( T `  x ) )  e.  RR  /\  y  e.  RR )  /\  ( N `  ( T `  x )
)  e.  RR )  ->  ( 0  < 
( N `  ( T `  x )
)  ->  ( (
( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
180130, 140, 130, 179syl21anc 1183 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  ->  ( (
( N `  ( T `  x )
)  x.  ( N `
 ( T `  x ) ) )  <_  ( y  x.  ( N `  ( T `  x )
) )  ->  ( N `  ( T `  x ) )  <_ 
y ) ) )
181175, 180mpid 39 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  ->  ( N `  ( T `  x
) )  <_  y
) )
182 0re 8833 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
183182a1i 12 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  e.  RR )
1844, 134, 20blof 21355 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x )  e.  ( U  BLnOp  W )
)  ->  ( F `  x ) : X --> CC )
1853, 104, 184mp3an12 1269 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x )  e.  ( U  BLnOp  W )  ->  ( F `  x ) : X --> CC )
186133, 185syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x ) : X --> CC )
187186ad2ant2r 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( F `  x ) : X --> CC )
1884, 134, 106nmooge0 21337 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( F `  x ) : X --> CC )  ->  0  <_ 
( ( U normOp OLD W ) `  ( F `  x )
) )
1893, 104, 188mp3an12 1269 . . . . . . . . . . . . . . . 16  |-  ( ( F `  x ) : X --> CC  ->  0  <_  ( ( U
normOp OLD W ) `  ( F `  x ) ) )
190187, 189syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  ( ( U normOp OLD W
) `  ( F `  x ) ) )
191183, 138, 140, 190, 173letrd 8968 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  0  <_  y )
192 breq1 4027 . . . . . . . . . . . . . 14  |-  ( 0  =  ( N `  ( T `  x ) )  ->  ( 0  <_  y  <->  ( N `  ( T `  x
) )  <_  y
) )
193191, 192syl5ibcom 213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  =  ( N `  ( T `  x ) )  ->  ( N `  ( T `  x
) )  <_  y
) )
194 leloe 8903 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( N `  ( T `
 x ) )  e.  RR )  -> 
( 0  <_  ( N `  ( T `  x ) )  <->  ( 0  <  ( N `  ( T `  x ) )  \/  0  =  ( N `  ( T `  x )
) ) ) )
195182, 130, 194sylancr 646 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <_  ( N `  ( T `  x ) )  <->  ( 0  < 
( N `  ( T `  x )
)  \/  0  =  ( N `  ( T `  x )
) ) ) )
196172, 195mpbid 203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( 0  <  ( N `  ( T `  x ) )  \/  0  =  ( N `  ( T `  x )
) ) )
197181, 193, 196mpjaod 372 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( ( U normOp OLD W ) `  ( F `  x )
)  <_  y )
)  ->  ( N `  ( T `  x
) )  <_  y
)
198197expr 600 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  (
( ( U normOp OLD W ) `  ( F `  x )
)  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) )
199198adantrr 699 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( ( ( U normOp OLD W ) `  ( F `  x ) )  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) )
200129, 199syld 42 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  RR )  /\  (
x  e.  X  /\  ( N `  x )  <_  1 ) )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w )  <_  y  ->  ( N `  ( T `  x )
)  <_  y )
)
201200expr 600 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  (
( N `  x
)  <_  1  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
202201com23 74 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  X )  ->  ( A. w  e.  K  ( ( U normOp OLD W ) `  w
)  <_  y  ->  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
203202ralrimdva 2634 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. w  e.  K  (
( U normOp OLD W
) `  w )  <_  y  ->  A. x  e.  X  ( ( N `  x )  <_  1  ->  ( N `  ( T `  x
) )  <_  y
) ) )
204203reximdva 2656 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR  A. w  e.  K  ( ( U
normOp OLD W ) `  w )  <_  y  ->  E. y  e.  RR  A. x  e.  X  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
205110, 204mpd 16 . . . 4  |-  ( ph  ->  E. y  e.  RR  A. x  e.  X  ( ( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) )
206 eqid 2284 . . . . . 6  |-  ( U
normOp OLD U )  =  ( U normOp OLD U
)
2074, 4, 11, 11, 206, 3, 3nmobndi 21345 . . . . 5  |-  ( T : X --> X  -> 
( ( ( U
normOp OLD U ) `  T )  e.  RR  <->  E. y  e.  RR  A. x  e.  X  (
( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
2088, 207syl 17 . . . 4  |-  ( ph  ->  ( ( ( U
normOp OLD U ) `  T )  e.  RR  <->  E. y  e.  RR  A. x  e.  X  (
( N `  x
)  <_  1  ->  ( N `  ( T `
 x ) )  <_  y ) ) )
209205, 208mpbird 225 . . 3  |-  ( ph  ->  ( ( U normOp OLD U ) `  T
)  e.  RR )
210 ltpnf 10458 . . 3  |-  ( ( ( U normOp OLD U
) `  T )  e.  RR  ->  ( ( U normOp OLD U ) `  T )  <  +oo )
211209, 210syl 17 . 2  |-  ( ph  ->  ( ( U normOp OLD U ) `  T
)  <  +oo )
212 htth.4 . . . 4  |-  B  =  ( U  BLnOp  U )
213206, 5, 212isblo 21352 . . 3  |-  ( ( U  e.  NrmCVec  /\  U  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD U
) `  T )  <  +oo ) ) )
2143, 3, 213mp2an 655 . 2  |-  ( T  e.  B  <->  ( T  e.  L  /\  (
( U normOp OLD U
) `  T )  <  +oo ) )
2151, 211, 214sylanbrc 647 1  |-  ( ph  ->  T  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2544   E.wrex 2545   {crab 2548    C_ wss 3153   <.cop 3644   class class class wbr 4024    e. cmpt 4078   dom cdm 4688   ran crn 4689   "cima 4691   Fun wfun 5215   -->wf 5217   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    +oocpnf 8859    < clt 8862    <_ cle 8863   2c2 9790   ^cexp 11098   abscabs 11713   NrmCVeccnv 21132   BaseSetcba 21134   normCVcnmcv 21138   .i OLDcdip 21265    LnOp clno 21310   normOp OLDcnmoo 21311    BLnOp cblo 21312   CPreHil OLDccphlo 21382   CBanccbn 21433   CHil
OLDchlo 21456
This theorem is referenced by:  htth  21490
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-dc 8067  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-clim 11956  df-sum 12153  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-cn 16951  df-cnp 16952  df-lm 16953  df-t1 17036  df-haus 17037  df-cmp 17108  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-fcls 17630  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-cfil 18675  df-cau 18676  df-cmet 18677  df-grpo 20850  df-gid 20851  df-ginv 20852  df-gdiv 20853  df-ablo 20941  df-vc 21094  df-nv 21140  df-va 21143  df-ba 21144  df-sm 21145  df-0v 21146  df-vs 21147  df-nmcv 21148  df-ims 21149  df-dip 21266  df-lno 21314  df-nmoo 21315  df-blo 21316  df-0o 21317  df-ph 21383  df-cbn 21434  df-hlo 21457
  Copyright terms: Public domain W3C validator