MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fibl Unicode version

Theorem i1fibl 19566
Description: A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
i1fibl  |-  ( F  e.  dom  S.1  ->  F  e.  L ^1 )

Proof of Theorem i1fibl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 i1ff 19435 . . 3  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
21feqmptd 5718 . 2  |-  ( F  e.  dom  S.1  ->  F  =  ( x  e.  RR  |->  ( F `  x ) ) )
3 i1fmbf 19434 . . . 4  |-  ( F  e.  dom  S.1  ->  F  e. MblFn )
42, 3eqeltrrd 2462 . . 3  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  ( F `  x ) )  e. MblFn )
5 simpr 448 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  x  e.  RR )
65biantrurd 495 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( 0  <_ 
( F `  x
)  <->  ( x  e.  RR  /\  0  <_ 
( F `  x
) ) ) )
76ifbid 3700 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  =  if ( ( x  e.  RR  /\  0  <_  ( F `  x
) ) ,  ( F `  x ) ,  0 ) )
87mpteq2dva 4236 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_ 
( F `  x
) ) ,  ( F `  x ) ,  0 ) ) )
98fveq2d 5672 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  =  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_ 
( F `  x
) ) ,  ( F `  x ) ,  0 ) ) ) )
10 eqid 2387 . . . . . . 7  |-  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
1110i1fpos 19465 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  dom  S.1 )
12 0re 9024 . . . . . . . . . 10  |-  0  e.  RR
131ffvelrnda 5809 . . . . . . . . . 10  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
14 max1 10705 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( F `  x )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
1512, 13, 14sylancr 645 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  0  <_  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
1615ralrimiva 2732 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  A. x  e.  RR  0  <_  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
17 reex 9014 . . . . . . . . . 10  |-  RR  e.  _V
1817a1i 11 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  RR  e.  _V )
1912a1i 11 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  0  e.  RR )
20 fvex 5682 . . . . . . . . . . 11  |-  ( F `
 x )  e. 
_V
21 c0ex 9018 . . . . . . . . . . 11  |-  0  e.  _V
2220, 21ifex 3740 . . . . . . . . . 10  |-  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  e. 
_V
2322a1i 11 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  e. 
_V )
24 fconstmpt 4861 . . . . . . . . . 10  |-  ( RR 
X.  { 0 } )  =  ( x  e.  RR  |->  0 )
2524a1i 11 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( RR  X.  { 0 } )  =  ( x  e.  RR  |->  0 ) )
26 eqidd 2388 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
2718, 19, 23, 25, 26ofrfval2 6262 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  {
0 } )  o R  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  <->  A. x  e.  RR  0  <_  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
2816, 27mpbird 224 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( RR  X.  { 0 } )  o R  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
29 ax-resscn 8980 . . . . . . . . 9  |-  RR  C_  CC
3029a1i 11 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  RR  C_  CC )
3122, 10fnmpti 5513 . . . . . . . . 9  |-  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  Fn  RR
3231a1i 11 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  Fn  RR )
3330, 320pledm 19432 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( 0 p  o R  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  <-> 
( RR  X.  {
0 } )  o R  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
3428, 33mpbird 224 . . . . . 6  |-  ( F  e.  dom  S.1  ->  0 p  o R  <_ 
( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
35 itg2itg1 19495 . . . . . 6  |-  ( ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  dom  S.1 
/\  0 p  o R  <_  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  =  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
3611, 34, 35syl2anc 643 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  =  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
379, 36eqtr3d 2421 . . . 4  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_  ( F `  x ) ) ,  ( F `  x
) ,  0 ) ) )  =  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) ) )
38 itg1cl 19444 . . . . 5  |-  ( ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )  e.  dom  S.1 
->  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  e.  RR )
3911, 38syl 16 . . . 4  |-  ( F  e.  dom  S.1  ->  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )  e.  RR )
4037, 39eqeltrd 2461 . . 3  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_  ( F `  x ) ) ,  ( F `  x
) ,  0 ) ) )  e.  RR )
415biantrurd 495 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( 0  <_  -u ( F `  x
)  <->  ( x  e.  RR  /\  0  <_  -u ( F `  x
) ) ) )
4241ifbid 3700 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  =  if ( ( x  e.  RR  /\  0  <_ 
-u ( F `  x ) ) , 
-u ( F `  x ) ,  0 ) )
4342mpteq2dva 4236 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_  -u ( F `  x
) ) ,  -u ( F `  x ) ,  0 ) ) )
4443fveq2d 5672 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_  -u ( F `  x
) ) ,  -u ( F `  x ) ,  0 ) ) ) )
45 1re 9023 . . . . . . . . . . . 12  |-  1  e.  RR
4645renegcli 9294 . . . . . . . . . . 11  |-  -u 1  e.  RR
4746a1i 11 . . . . . . . . . 10  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  -u 1  e.  RR )
48 fconstmpt 4861 . . . . . . . . . . 11  |-  ( RR 
X.  { -u 1 } )  =  ( x  e.  RR  |->  -u
1 )
4948a1i 11 . . . . . . . . . 10  |-  ( F  e.  dom  S.1  ->  ( RR  X.  { -u
1 } )  =  ( x  e.  RR  |->  -u 1 ) )
5018, 47, 13, 49, 2offval2 6261 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  { -u 1 } )  o F  x.  F )  =  ( x  e.  RR  |->  ( -u 1  x.  ( F `  x
) ) ) )
5113recnd 9047 . . . . . . . . . . 11  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( F `  x )  e.  CC )
5251mulm1d 9417 . . . . . . . . . 10  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  ( -u 1  x.  ( F `  x
) )  =  -u ( F `  x ) )
5352mpteq2dva 4236 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  (
-u 1  x.  ( F `  x )
) )  =  ( x  e.  RR  |->  -u ( F `  x ) ) )
5450, 53eqtrd 2419 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  { -u 1 } )  o F  x.  F )  =  ( x  e.  RR  |->  -u ( F `  x ) ) )
55 id 20 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  F  e.  dom  S.1 )
5646a1i 11 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  -u
1  e.  RR )
5755, 56i1fmulc 19462 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  { -u 1 } )  o F  x.  F )  e.  dom  S.1 )
5854, 57eqeltrrd 2462 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  -u ( F `  x ) )  e.  dom  S.1 )
5958i1fposd 19466 . . . . . 6  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  dom  S.1 )
6013renegcld 9396 . . . . . . . . . 10  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  -u ( F `  x )  e.  RR )
61 max1 10705 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  -u ( F `  x
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )
6212, 60, 61sylancr 645 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )
6362ralrimiva 2732 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  A. x  e.  RR  0  <_  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )
64 negex 9236 . . . . . . . . . . 11  |-  -u ( F `  x )  e.  _V
6564, 21ifex 3740 . . . . . . . . . 10  |-  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 )  e.  _V
6665a1i 11 . . . . . . . . 9  |-  ( ( F  e.  dom  S.1  /\  x  e.  RR )  ->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 )  e. 
_V )
67 eqidd 2388 . . . . . . . . 9  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )
6818, 19, 66, 25, 67ofrfval2 6262 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( ( RR  X.  {
0 } )  o R  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  <->  A. x  e.  RR  0  <_  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )
6963, 68mpbird 224 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( RR  X.  { 0 } )  o R  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )
70 eqid 2387 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )
7165, 70fnmpti 5513 . . . . . . . . 9  |-  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  Fn  RR
7271a1i 11 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  Fn  RR )
7330, 720pledm 19432 . . . . . . 7  |-  ( F  e.  dom  S.1  ->  ( 0 p  o R  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  <-> 
( RR  X.  {
0 } )  o R  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
7469, 73mpbird 224 . . . . . 6  |-  ( F  e.  dom  S.1  ->  0 p  o R  <_ 
( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )
75 itg2itg1 19495 . . . . . 6  |-  ( ( ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  dom  S.1 
/\  0 p  o R  <_  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  =  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
7659, 74, 75syl2anc 643 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) )  =  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
7744, 76eqtr3d 2421 . . . 4  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_  -u ( F `
 x ) ) ,  -u ( F `  x ) ,  0 ) ) )  =  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) ) )
78 itg1cl 19444 . . . . 5  |-  ( ( x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) )  e.  dom  S.1 
->  ( S.1 `  (
x  e.  RR  |->  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  e.  RR )
7959, 78syl 16 . . . 4  |-  ( F  e.  dom  S.1  ->  ( S.1 `  ( x  e.  RR  |->  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) )  e.  RR )
8077, 79eqeltrd 2461 . . 3  |-  ( F  e.  dom  S.1  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_  -u ( F `
 x ) ) ,  -u ( F `  x ) ,  0 ) ) )  e.  RR )
8113iblrelem 19549 . . 3  |-  ( F  e.  dom  S.1  ->  ( ( x  e.  RR  |->  ( F `  x ) )  e.  L ^1  <->  ( ( x  e.  RR  |->  ( F `  x ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_  ( F `  x ) ) ,  ( F `  x
) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  RR  /\  0  <_  -u ( F `  x
) ) ,  -u ( F `  x ) ,  0 ) ) )  e.  RR ) ) )
824, 40, 80, 81mpbir3and 1137 . 2  |-  ( F  e.  dom  S.1  ->  ( x  e.  RR  |->  ( F `  x ) )  e.  L ^1 )
832, 82eqeltrd 2461 1  |-  ( F  e.  dom  S.1  ->  F  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   _Vcvv 2899    C_ wss 3263   ifcif 3682   {csn 3757   class class class wbr 4153    e. cmpt 4207    X. cxp 4816   dom cdm 4818    Fn wfn 5389   ` cfv 5394  (class class class)co 6020    o Fcof 6242    o Rcofr 6243   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    x. cmul 8928    <_ cle 9054   -ucneg 9224  MblFncmbf 19373   S.1citg1 19374   S.2citg2 19375   L ^1cibl 19376   0 pc0p 19428
This theorem is referenced by:  itgitg1  19567
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-disj 4124  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-ofr 6245  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-sum 12407  df-rest 13577  df-topgen 13594  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-top 16886  df-bases 16888  df-topon 16889  df-cmp 17372  df-ovol 19228  df-vol 19229  df-mbf 19379  df-itg1 19380  df-itg2 19381  df-ibl 19382  df-0p 19429
  Copyright terms: Public domain W3C validator