MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fres Unicode version

Theorem i1fres 19062
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside  A.) (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypothesis
Ref Expression
i1fres.1  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( F `  x ) ,  0 ) )
Assertion
Ref Expression
i1fres  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  e.  dom  S.1 )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    G( x)

Proof of Theorem i1fres
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 19033 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
21adantr 451 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  F : RR --> RR )
3 ffn 5391 . . . . . . 7  |-  ( F : RR --> RR  ->  F  Fn  RR )
42, 3syl 15 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  F  Fn  RR )
5 fnfvelrn 5664 . . . . . 6  |-  ( ( F  Fn  RR  /\  x  e.  RR )  ->  ( F `  x
)  e.  ran  F
)
64, 5sylan 457 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  ( F `  x )  e.  ran  F )
7 i1f0rn 19039 . . . . . 6  |-  ( F  e.  dom  S.1  ->  0  e.  ran  F )
87ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  0  e.  ran  F )
9 ifcl 3603 . . . . 5  |-  ( ( ( F `  x
)  e.  ran  F  /\  0  e.  ran  F )  ->  if (
x  e.  A , 
( F `  x
) ,  0 )  e.  ran  F )
106, 8, 9syl2anc 642 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  e.  ran  F
)
11 i1fres.1 . . . 4  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( F `  x ) ,  0 ) )
1210, 11fmptd 5686 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G : RR --> ran  F )
13 frn 5397 . . . 4  |-  ( F : RR --> RR  ->  ran 
F  C_  RR )
142, 13syl 15 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  F  C_  RR )
15 fss 5399 . . 3  |-  ( ( G : RR --> ran  F  /\  ran  F  C_  RR )  ->  G : RR --> RR )
1612, 14, 15syl2anc 642 . 2  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G : RR --> RR )
17 i1frn 19034 . . . 4  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
1817adantr 451 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  F  e.  Fin )
19 frn 5397 . . . 4  |-  ( G : RR --> ran  F  ->  ran  G  C_  ran  F )
2012, 19syl 15 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  G  C_  ran  F )
21 ssfi 7085 . . 3  |-  ( ( ran  F  e.  Fin  /\ 
ran  G  C_  ran  F
)  ->  ran  G  e. 
Fin )
2218, 20, 21syl2anc 642 . 2  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  G  e.  Fin )
23 eleq1 2345 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
24 fveq2 5527 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
25 eqidd 2286 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  0  =  0 )
2623, 24, 25ifbieq12d 3589 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  =  if ( z  e.  A , 
( F `  z
) ,  0 ) )
27 fvex 5541 . . . . . . . . . . . . . 14  |-  ( F `
 z )  e. 
_V
28 c0ex 8834 . . . . . . . . . . . . . 14  |-  0  e.  _V
2927, 28ifex 3625 . . . . . . . . . . . . 13  |-  if ( z  e.  A , 
( F `  z
) ,  0 )  e.  _V
3026, 11, 29fvmpt 5604 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  ( G `  z )  =  if ( z  e.  A ,  ( F `
 z ) ,  0 ) )
3130adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( G `  z )  =  if ( z  e.  A ,  ( F `
 z ) ,  0 ) )
3231eqeq1d 2293 . . . . . . . . . 10  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  if (
z  e.  A , 
( F `  z
) ,  0 )  =  y ) )
33 eldifsni 3752 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ran  G  \  { 0 } )  ->  y  =/=  0
)
3433ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  y  =/=  0 )
3534necomd 2531 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  0  =/=  y )
36 iffalse 3574 . . . . . . . . . . . . . 14  |-  ( -.  z  e.  A  ->  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  0 )
3736neeq1d 2461 . . . . . . . . . . . . 13  |-  ( -.  z  e.  A  -> 
( if ( z  e.  A ,  ( F `  z ) ,  0 )  =/=  y  <->  0  =/=  y
) )
3835, 37syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( -.  z  e.  A  ->  if ( z  e.  A ,  ( F `
 z ) ,  0 )  =/=  y
) )
3938necon4bd 2510 . . . . . . . . . . 11  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  -> 
z  e.  A ) )
4039pm4.71rd 616 . . . . . . . . . 10  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  <->  ( z  e.  A  /\  if ( z  e.  A , 
( F `  z
) ,  0 )  =  y ) ) )
4132, 40bitrd 244 . . . . . . . . 9  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  ( z  e.  A  /\  if ( z  e.  A , 
( F `  z
) ,  0 )  =  y ) ) )
42 iftrue 3573 . . . . . . . . . . 11  |-  ( z  e.  A  ->  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  ( F `
 z ) )
4342eqeq1d 2293 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  <->  ( F `  z )  =  y ) )
4443pm5.32i 618 . . . . . . . . 9  |-  ( ( z  e.  A  /\  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y )  <-> 
( z  e.  A  /\  ( F `  z
)  =  y ) )
4541, 44syl6bb 252 . . . . . . . 8  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  ( z  e.  A  /\  ( F `  z )  =  y ) ) )
4645pm5.32da 622 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  RR  /\  ( G `  z )  =  y )  <->  ( z  e.  RR  /\  ( z  e.  A  /\  ( F `  z )  =  y ) ) ) )
47 an12 772 . . . . . . 7  |-  ( ( z  e.  RR  /\  ( z  e.  A  /\  ( F `  z
)  =  y ) )  <->  ( z  e.  A  /\  ( z  e.  RR  /\  ( F `  z )  =  y ) ) )
4846, 47syl6bb 252 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  RR  /\  ( G `  z )  =  y )  <->  ( z  e.  A  /\  (
z  e.  RR  /\  ( F `  z )  =  y ) ) ) )
49 ffn 5391 . . . . . . . . 9  |-  ( G : RR --> ran  F  ->  G  Fn  RR )
5012, 49syl 15 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  Fn  RR )
5150adantr 451 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  G  Fn  RR )
52 fniniseg 5648 . . . . . . 7  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { y } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  y ) ) )
5351, 52syl 15 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
( z  e.  RR  /\  ( G `  z
)  =  y ) ) )
544adantr 451 . . . . . . . 8  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  F  Fn  RR )
55 fniniseg 5648 . . . . . . . 8  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { y } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  y ) ) )
5654, 55syl 15 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' F " { y } )  <-> 
( z  e.  RR  /\  ( F `  z
)  =  y ) ) )
5756anbi2d 684 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  A  /\  z  e.  ( `' F " { y } ) )  <->  ( z  e.  A  /\  (
z  e.  RR  /\  ( F `  z )  =  y ) ) ) )
5848, 53, 573bitr4d 276 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
( z  e.  A  /\  z  e.  ( `' F " { y } ) ) ) )
59 elin 3360 . . . . 5  |-  ( z  e.  ( A  i^i  ( `' F " { y } ) )  <->  ( z  e.  A  /\  z  e.  ( `' F " { y } ) ) )
6058, 59syl6bbr 254 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
z  e.  ( A  i^i  ( `' F " { y } ) ) ) )
6160eqrdv 2283 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' G " { y } )  =  ( A  i^i  ( `' F " { y } ) ) )
62 simplr 731 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  A  e.  dom  vol )
63 i1fima 19035 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( `' F " { y } )  e.  dom  vol )
6463ad2antrr 706 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' F " { y } )  e.  dom  vol )
65 inmbl 18901 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( `' F " { y } )  e.  dom  vol )  ->  ( A  i^i  ( `' F " { y } ) )  e. 
dom  vol )
6662, 64, 65syl2anc 642 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( A  i^i  ( `' F " { y } ) )  e.  dom  vol )
6761, 66eqeltrd 2359 . 2  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' G " { y } )  e.  dom  vol )
6861fveq2d 5531 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  =  ( vol `  ( A  i^i  ( `' F " { y } ) ) ) )
69 mblvol 18891 . . . . 5  |-  ( ( A  i^i  ( `' F " { y } ) )  e. 
dom  vol  ->  ( vol `  ( A  i^i  ( `' F " { y } ) ) )  =  ( vol * `  ( A  i^i  ( `' F " { y } ) ) ) )
7066, 69syl 15 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( A  i^i  ( `' F " { y } ) ) )  =  ( vol * `  ( A  i^i  ( `' F " { y } ) ) ) )
7168, 70eqtrd 2317 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  =  ( vol
* `  ( A  i^i  ( `' F " { y } ) ) ) )
72 inss2 3392 . . . . 5  |-  ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } )
7372a1i 10 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } ) )
74 mblss 18892 . . . . 5  |-  ( ( `' F " { y } )  e.  dom  vol 
->  ( `' F " { y } ) 
C_  RR )
7564, 74syl 15 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' F " { y } )  C_  RR )
76 mblvol 18891 . . . . . 6  |-  ( ( `' F " { y } )  e.  dom  vol 
->  ( vol `  ( `' F " { y } ) )  =  ( vol * `  ( `' F " { y } ) ) )
7764, 76syl 15 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' F " { y } ) )  =  ( vol
* `  ( `' F " { y } ) ) )
78 i1fima2sn 19037 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  y  e.  ( ran 
G  \  { 0 } ) )  -> 
( vol `  ( `' F " { y } ) )  e.  RR )
7978adantlr 695 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' F " { y } ) )  e.  RR )
8077, 79eqeltrrd 2360 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol * `
 ( `' F " { y } ) )  e.  RR )
81 ovolsscl 18847 . . . 4  |-  ( ( ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } )  /\  ( `' F " { y } )  C_  RR  /\  ( vol * `  ( `' F " { y } ) )  e.  RR )  ->  ( vol * `  ( A  i^i  ( `' F " { y } ) ) )  e.  RR )
8273, 75, 80, 81syl3anc 1182 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol * `
 ( A  i^i  ( `' F " { y } ) ) )  e.  RR )
8371, 82eqeltrd 2359 . 2  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  e.  RR )
8416, 22, 67, 83i1fd 19038 1  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  e.  dom  S.1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448    \ cdif 3151    i^i cin 3153    C_ wss 3154   ifcif 3567   {csn 3642    e. cmpt 4079   `'ccnv 4690   dom cdm 4691   ran crn 4692   "cima 4694    Fn wfn 5252   -->wf 5253   ` cfv 5257   Fincfn 6865   RRcr 8738   0cc0 8739   vol *covol 18824   volcvol 18825   S.1citg1 18972
This theorem is referenced by:  i1fpos  19063  itg1climres  19071  itg2uba  19100  itg2splitlem  19105  itg2monolem1  19107
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161  df-rest 13329  df-topgen 13346  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-top 16638  df-bases 16640  df-topon 16641  df-cmp 17116  df-ovol 18826  df-vol 18827  df-mbf 18977  df-itg1 18978
  Copyright terms: Public domain W3C validator