MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fres Structured version   Unicode version

Theorem i1fres 19589
Description: The "restriction" of a simple function to a measurable subset is simple. (It's not actually a restriction because it is zero instead of undefined outside  A.) (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypothesis
Ref Expression
i1fres.1  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( F `  x ) ,  0 ) )
Assertion
Ref Expression
i1fres  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  e.  dom  S.1 )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    G( x)

Proof of Theorem i1fres
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 19560 . . . . . . . 8  |-  ( F  e.  dom  S.1  ->  F : RR --> RR )
21adantr 452 . . . . . . 7  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  F : RR --> RR )
3 ffn 5583 . . . . . . 7  |-  ( F : RR --> RR  ->  F  Fn  RR )
42, 3syl 16 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  F  Fn  RR )
5 fnfvelrn 5859 . . . . . 6  |-  ( ( F  Fn  RR  /\  x  e.  RR )  ->  ( F `  x
)  e.  ran  F
)
64, 5sylan 458 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  ( F `  x )  e.  ran  F )
7 i1f0rn 19566 . . . . . 6  |-  ( F  e.  dom  S.1  ->  0  e.  ran  F )
87ad2antrr 707 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  0  e.  ran  F )
9 ifcl 3767 . . . . 5  |-  ( ( ( F `  x
)  e.  ran  F  /\  0  e.  ran  F )  ->  if (
x  e.  A , 
( F `  x
) ,  0 )  e.  ran  F )
106, 8, 9syl2anc 643 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  x  e.  RR )  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  e.  ran  F
)
11 i1fres.1 . . . 4  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( F `  x ) ,  0 ) )
1210, 11fmptd 5885 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G : RR --> ran  F )
13 frn 5589 . . . 4  |-  ( F : RR --> RR  ->  ran 
F  C_  RR )
142, 13syl 16 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  F  C_  RR )
15 fss 5591 . . 3  |-  ( ( G : RR --> ran  F  /\  ran  F  C_  RR )  ->  G : RR --> RR )
1612, 14, 15syl2anc 643 . 2  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G : RR --> RR )
17 i1frn 19561 . . . 4  |-  ( F  e.  dom  S.1  ->  ran 
F  e.  Fin )
1817adantr 452 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  F  e.  Fin )
19 frn 5589 . . . 4  |-  ( G : RR --> ran  F  ->  ran  G  C_  ran  F )
2012, 19syl 16 . . 3  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  G  C_  ran  F )
21 ssfi 7321 . . 3  |-  ( ( ran  F  e.  Fin  /\ 
ran  G  C_  ran  F
)  ->  ran  G  e. 
Fin )
2218, 20, 21syl2anc 643 . 2  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  ran  G  e.  Fin )
23 eleq1 2495 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
24 fveq2 5720 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
25 eqidd 2436 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  0  =  0 )
2623, 24, 25ifbieq12d 3753 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  =  if ( z  e.  A , 
( F `  z
) ,  0 ) )
27 fvex 5734 . . . . . . . . . . . . . 14  |-  ( F `
 z )  e. 
_V
28 c0ex 9077 . . . . . . . . . . . . . 14  |-  0  e.  _V
2927, 28ifex 3789 . . . . . . . . . . . . 13  |-  if ( z  e.  A , 
( F `  z
) ,  0 )  e.  _V
3026, 11, 29fvmpt 5798 . . . . . . . . . . . 12  |-  ( z  e.  RR  ->  ( G `  z )  =  if ( z  e.  A ,  ( F `
 z ) ,  0 ) )
3130adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( G `  z )  =  if ( z  e.  A ,  ( F `
 z ) ,  0 ) )
3231eqeq1d 2443 . . . . . . . . . 10  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  if (
z  e.  A , 
( F `  z
) ,  0 )  =  y ) )
33 eldifsni 3920 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ran  G  \  { 0 } )  ->  y  =/=  0
)
3433ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  y  =/=  0 )
3534necomd 2681 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  0  =/=  y )
36 iffalse 3738 . . . . . . . . . . . . . 14  |-  ( -.  z  e.  A  ->  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  0 )
3736neeq1d 2611 . . . . . . . . . . . . 13  |-  ( -.  z  e.  A  -> 
( if ( z  e.  A ,  ( F `  z ) ,  0 )  =/=  y  <->  0  =/=  y
) )
3835, 37syl5ibrcom 214 . . . . . . . . . . . 12  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( -.  z  e.  A  ->  if ( z  e.  A ,  ( F `
 z ) ,  0 )  =/=  y
) )
3938necon4bd 2660 . . . . . . . . . . 11  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  -> 
z  e.  A ) )
4039pm4.71rd 617 . . . . . . . . . 10  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  <->  ( z  e.  A  /\  if ( z  e.  A , 
( F `  z
) ,  0 )  =  y ) ) )
4132, 40bitrd 245 . . . . . . . . 9  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  ( z  e.  A  /\  if ( z  e.  A , 
( F `  z
) ,  0 )  =  y ) ) )
42 iftrue 3737 . . . . . . . . . . 11  |-  ( z  e.  A  ->  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  ( F `
 z ) )
4342eqeq1d 2443 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y  <->  ( F `  z )  =  y ) )
4443pm5.32i 619 . . . . . . . . 9  |-  ( ( z  e.  A  /\  if ( z  e.  A ,  ( F `  z ) ,  0 )  =  y )  <-> 
( z  e.  A  /\  ( F `  z
)  =  y ) )
4541, 44syl6bb 253 . . . . . . . 8  |-  ( ( ( ( F  e. 
dom  S.1  /\  A  e. 
dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  /\  z  e.  RR )  ->  (
( G `  z
)  =  y  <->  ( z  e.  A  /\  ( F `  z )  =  y ) ) )
4645pm5.32da 623 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  RR  /\  ( G `  z )  =  y )  <->  ( z  e.  RR  /\  ( z  e.  A  /\  ( F `  z )  =  y ) ) ) )
47 an12 773 . . . . . . 7  |-  ( ( z  e.  RR  /\  ( z  e.  A  /\  ( F `  z
)  =  y ) )  <->  ( z  e.  A  /\  ( z  e.  RR  /\  ( F `  z )  =  y ) ) )
4846, 47syl6bb 253 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  RR  /\  ( G `  z )  =  y )  <->  ( z  e.  A  /\  (
z  e.  RR  /\  ( F `  z )  =  y ) ) ) )
49 ffn 5583 . . . . . . . . 9  |-  ( G : RR --> ran  F  ->  G  Fn  RR )
5012, 49syl 16 . . . . . . . 8  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  Fn  RR )
5150adantr 452 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  G  Fn  RR )
52 fniniseg 5843 . . . . . . 7  |-  ( G  Fn  RR  ->  (
z  e.  ( `' G " { y } )  <->  ( z  e.  RR  /\  ( G `
 z )  =  y ) ) )
5351, 52syl 16 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
( z  e.  RR  /\  ( G `  z
)  =  y ) ) )
544adantr 452 . . . . . . . 8  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  F  Fn  RR )
55 fniniseg 5843 . . . . . . . 8  |-  ( F  Fn  RR  ->  (
z  e.  ( `' F " { y } )  <->  ( z  e.  RR  /\  ( F `
 z )  =  y ) ) )
5654, 55syl 16 . . . . . . 7  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' F " { y } )  <-> 
( z  e.  RR  /\  ( F `  z
)  =  y ) ) )
5756anbi2d 685 . . . . . 6  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( (
z  e.  A  /\  z  e.  ( `' F " { y } ) )  <->  ( z  e.  A  /\  (
z  e.  RR  /\  ( F `  z )  =  y ) ) ) )
5848, 53, 573bitr4d 277 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
( z  e.  A  /\  z  e.  ( `' F " { y } ) ) ) )
59 elin 3522 . . . . 5  |-  ( z  e.  ( A  i^i  ( `' F " { y } ) )  <->  ( z  e.  A  /\  z  e.  ( `' F " { y } ) ) )
6058, 59syl6bbr 255 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( z  e.  ( `' G " { y } )  <-> 
z  e.  ( A  i^i  ( `' F " { y } ) ) ) )
6160eqrdv 2433 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' G " { y } )  =  ( A  i^i  ( `' F " { y } ) ) )
62 simplr 732 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  A  e.  dom  vol )
63 i1fima 19562 . . . . 5  |-  ( F  e.  dom  S.1  ->  ( `' F " { y } )  e.  dom  vol )
6463ad2antrr 707 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' F " { y } )  e.  dom  vol )
65 inmbl 19428 . . . 4  |-  ( ( A  e.  dom  vol  /\  ( `' F " { y } )  e.  dom  vol )  ->  ( A  i^i  ( `' F " { y } ) )  e. 
dom  vol )
6662, 64, 65syl2anc 643 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( A  i^i  ( `' F " { y } ) )  e.  dom  vol )
6761, 66eqeltrd 2509 . 2  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' G " { y } )  e.  dom  vol )
6861fveq2d 5724 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  =  ( vol `  ( A  i^i  ( `' F " { y } ) ) ) )
69 mblvol 19418 . . . . 5  |-  ( ( A  i^i  ( `' F " { y } ) )  e. 
dom  vol  ->  ( vol `  ( A  i^i  ( `' F " { y } ) ) )  =  ( vol * `  ( A  i^i  ( `' F " { y } ) ) ) )
7066, 69syl 16 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( A  i^i  ( `' F " { y } ) ) )  =  ( vol * `  ( A  i^i  ( `' F " { y } ) ) ) )
7168, 70eqtrd 2467 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  =  ( vol
* `  ( A  i^i  ( `' F " { y } ) ) ) )
72 inss2 3554 . . . . 5  |-  ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } )
7372a1i 11 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } ) )
74 mblss 19419 . . . . 5  |-  ( ( `' F " { y } )  e.  dom  vol 
->  ( `' F " { y } ) 
C_  RR )
7564, 74syl 16 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( `' F " { y } )  C_  RR )
76 mblvol 19418 . . . . . 6  |-  ( ( `' F " { y } )  e.  dom  vol 
->  ( vol `  ( `' F " { y } ) )  =  ( vol * `  ( `' F " { y } ) ) )
7764, 76syl 16 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' F " { y } ) )  =  ( vol
* `  ( `' F " { y } ) ) )
78 i1fima2sn 19564 . . . . . 6  |-  ( ( F  e.  dom  S.1  /\  y  e.  ( ran 
G  \  { 0 } ) )  -> 
( vol `  ( `' F " { y } ) )  e.  RR )
7978adantlr 696 . . . . 5  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' F " { y } ) )  e.  RR )
8077, 79eqeltrrd 2510 . . . 4  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol * `
 ( `' F " { y } ) )  e.  RR )
81 ovolsscl 19374 . . . 4  |-  ( ( ( A  i^i  ( `' F " { y } ) )  C_  ( `' F " { y } )  /\  ( `' F " { y } )  C_  RR  /\  ( vol * `  ( `' F " { y } ) )  e.  RR )  ->  ( vol * `  ( A  i^i  ( `' F " { y } ) ) )  e.  RR )
8273, 75, 80, 81syl3anc 1184 . . 3  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol * `
 ( A  i^i  ( `' F " { y } ) ) )  e.  RR )
8371, 82eqeltrd 2509 . 2  |-  ( ( ( F  e.  dom  S.1 
/\  A  e.  dom  vol )  /\  y  e.  ( ran  G  \  { 0 } ) )  ->  ( vol `  ( `' G " { y } ) )  e.  RR )
8416, 22, 67, 83i1fd 19565 1  |-  ( ( F  e.  dom  S.1  /\  A  e.  dom  vol )  ->  G  e.  dom  S.1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598    \ cdif 3309    i^i cin 3311    C_ wss 3312   ifcif 3731   {csn 3806    e. cmpt 4258   `'ccnv 4869   dom cdm 4870   ran crn 4871   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446   Fincfn 7101   RRcr 8981   0cc0 8982   vol *covol 19351   volcvol 19352   S.1citg1 19499
This theorem is referenced by:  i1fpos  19590  itg1climres  19598  itg2uba  19627  itg2splitlem  19632  itg2monolem1  19634  ftc1anclem5  26274  ftc1anclem7  26276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472  df-rest 13642  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-top 16955  df-bases 16957  df-topon 16958  df-cmp 17442  df-ovol 19353  df-vol 19354  df-mbf 19504  df-itg1 19505
  Copyright terms: Public domain W3C validator