MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabs Unicode version

Theorem iblabs 19183
Description: The absolute value of an integrable function is integrable. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
iblabs  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iblabs
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabs.2 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
2 iblmbf 19122 . . . . . 6  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
31, 2syl 15 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
4 iblabs.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
53, 4mbfmptcl 18992 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
6 eqidd 2284 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
7 absf 11821 . . . . . 6  |-  abs : CC
--> RR
87a1i 10 . . . . 5  |-  ( ph  ->  abs : CC --> RR )
98feqmptd 5575 . . . 4  |-  ( ph  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
10 fveq2 5525 . . . 4  |-  ( y  =  B  ->  ( abs `  y )  =  ( abs `  B
) )
115, 6, 9, 10fmptco 5691 . . 3  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  B ) )  =  ( x  e.  A  |->  ( abs `  B ) ) )
12 eqid 2283 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
135, 12fmptd 5684 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
14 ax-resscn 8794 . . . . . . 7  |-  RR  C_  CC
15 ssid 3197 . . . . . . 7  |-  CC  C_  CC
16 cncfss 18403 . . . . . . 7  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
1714, 15, 16mp2an 653 . . . . . 6  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
18 abscncf 18405 . . . . . 6  |-  abs  e.  ( CC -cn-> RR )
1917, 18sselii 3177 . . . . 5  |-  abs  e.  ( CC -cn-> CC )
2019a1i 10 . . . 4  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
21 cncombf 19013 . . . 4  |-  ( ( ( x  e.  A  |->  B )  e. MblFn  /\  (
x  e.  A  |->  B ) : A --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( x  e.  A  |->  B ) )  e. MblFn )
223, 13, 20, 21syl3anc 1182 . . 3  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  B ) )  e. MblFn )
2311, 22eqeltrrd 2358 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e. MblFn )
245abscld 11918 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
2524rexrd 8881 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e. 
RR* )
265absge0d 11926 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
27 elxrge0 10747 . . . . . . 7  |-  ( ( abs `  B )  e.  ( 0 [,] 
+oo )  <->  ( ( abs `  B )  e. 
RR*  /\  0  <_  ( abs `  B ) ) )
2825, 26, 27sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,]  +oo ) )
29 0xr 8878 . . . . . . . 8  |-  0  e.  RR*
30 0le0 9827 . . . . . . . 8  |-  0  <_  0
31 elxrge0 10747 . . . . . . . 8  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
3229, 30, 31mpbir2an 886 . . . . . . 7  |-  0  e.  ( 0 [,]  +oo )
3332a1i 10 . . . . . 6  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,]  +oo ) )
3428, 33ifclda 3592 . . . . 5  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,]  +oo ) )
3534adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,] 
+oo ) )
36 eqid 2283 . . . 4  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
3735, 36fmptd 5684 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
38 reex 8828 . . . . . . . . 9  |-  RR  e.  _V
3938a1i 10 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
405recld 11679 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
4140recnd 8861 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
4241abscld 11918 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  RR )
4341absge0d 11926 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Re `  B )
) )
44 elrege0 10746 . . . . . . . . . . 11  |-  ( ( abs `  ( Re
`  B ) )  e.  ( 0 [,) 
+oo )  <->  ( ( abs `  ( Re `  B ) )  e.  RR  /\  0  <_ 
( abs `  (
Re `  B )
) ) )
4542, 43, 44sylanbrc 645 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Re `  B ) )  e.  ( 0 [,)  +oo ) )
46 0re 8838 . . . . . . . . . . . 12  |-  0  e.  RR
47 elrege0 10746 . . . . . . . . . . . 12  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
4846, 30, 47mpbir2an 886 . . . . . . . . . . 11  |-  0  e.  ( 0 [,)  +oo )
4948a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
5045, 49ifclda 3592 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  e.  ( 0 [,)  +oo ) )
5150adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 )  e.  ( 0 [,) 
+oo ) )
525imcld 11680 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
5352recnd 8861 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
5453abscld 11918 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  RR )
5553absge0d 11926 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  (
Im `  B )
) )
56 elrege0 10746 . . . . . . . . . . 11  |-  ( ( abs `  ( Im
`  B ) )  e.  ( 0 [,) 
+oo )  <->  ( ( abs `  ( Im `  B ) )  e.  RR  /\  0  <_ 
( abs `  (
Im `  B )
) ) )
5754, 55, 56sylanbrc 645 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  ( 0 [,)  +oo ) )
5857, 49ifclda 3592 . . . . . . . . 9  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 )  e.  ( 0 [,)  +oo ) )
5958adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 )  e.  ( 0 [,) 
+oo ) )
60 eqidd 2284 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) ) )
61 eqidd 2284 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) )
6239, 51, 59, 60, 61offval2 6095 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  ( Re `  B
) ) ,  0 )  +  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )
63 iftrue 3571 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  ( abs `  (
Re `  B )
) )
64 iftrue 3571 . . . . . . . . . . 11  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  ( abs `  (
Im `  B )
) )
6563, 64oveq12d 5876 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
66 iftrue 3571 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
6765, 66eqtr4d 2318 . . . . . . . . 9  |-  ( x  e.  A  ->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
68 00id 8987 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
69 iffalse 3572 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  =  0 )
70 iffalse 3572 . . . . . . . . . . 11  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 )  =  0 )
7169, 70oveq12d 5876 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  ( 0  +  0 ) )
72 iffalse 3572 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  0 )
7368, 71, 723eqtr4a 2341 . . . . . . . . 9  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im `  B
) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
7467, 73pm2.61i 156 . . . . . . . 8  |-  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )
7574mpteq2i 4103 . . . . . . 7  |-  ( x  e.  RR  |->  ( if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 )  +  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
7662, 75syl6req 2332 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )
7776fveq2d 5529 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( S.2 `  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
78 eqid 2283 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Re `  B )
) ,  0 ) )
795iblcn 19153 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L ^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L ^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) ) )
801, 79mpbid 201 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L ^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L ^1 ) )
8180simpld 445 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L ^1 )
824, 1, 78, 81, 40iblabslem 19182 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Re
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR ) )
8382simpld 445 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  e. MblFn )
8451, 78fmptd 5684 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
8582simprd 449 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  e.  RR )
86 eqid 2283 . . . . . . . 8  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) )
8780simprd 449 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L ^1 )
884, 1, 86, 87, 52iblabslem 19182 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( Im
`  B ) ) ,  0 ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR ) )
8988simpld 445 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) )  e. MblFn )
9059, 86fmptd 5684 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
9188simprd 449 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) )  e.  RR )
9283, 84, 85, 89, 90, 91itg2add 19114 . . . . 5  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Im `  B )
) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
9377, 92eqtrd 2315 . . . 4  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) ) )
9485, 91readdcld 8862 . . . 4  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  (
Re `  B )
) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  (
Im `  B )
) ,  0 ) ) ) )  e.  RR )
9593, 94eqeltrd 2357 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  e.  RR )
9642, 54readdcld 8862 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  RR )
9796rexrd 8881 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e. 
RR* )
9842, 54, 43, 55addge0d 9348 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
99 elxrge0 10747 . . . . . . . 8  |-  ( ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,]  +oo ) 
<->  ( ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) )  e.  RR*  /\  0  <_  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ) )
10097, 98, 99sylanbrc 645 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  e.  ( 0 [,]  +oo ) )
101100, 33ifclda 3592 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( ( abs `  ( Re
`  B ) )  +  ( abs `  (
Im `  B )
) ) ,  0 )  e.  ( 0 [,]  +oo ) )
102101adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 )  e.  ( 0 [,]  +oo )
)
103 eqid 2283 . . . . 5  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )
104102, 103fmptd 5684 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
105 ax-icn 8796 . . . . . . . . . . . 12  |-  _i  e.  CC
106 mulcl 8821 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
107105, 53, 106sylancr 644 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
_i  x.  ( Im `  B ) )  e.  CC )
10841, 107abstrid 11938 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
1095replimd 11682 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
110109fveq2d 5529 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  =  ( abs `  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) ) )
111 absmul 11779 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( abs `  (
_i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B ) ) ) )
112105, 53, 111sylancr 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( _i  x.  ( Im `  B ) ) )  =  ( ( abs `  _i )  x.  ( abs `  ( Im `  B
) ) ) )
113 absi 11771 . . . . . . . . . . . . . 14  |-  ( abs `  _i )  =  1
114113oveq1i 5868 . . . . . . . . . . . . 13  |-  ( ( abs `  _i )  x.  ( abs `  (
Im `  B )
) )  =  ( 1  x.  ( abs `  ( Im `  B
) ) )
11554recnd 8861 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  e.  CC )
116115mulid2d 8853 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
1  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
117114, 116syl5eq 2327 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  _i )  x.  ( abs `  ( Im `  B
) ) )  =  ( abs `  (
Im `  B )
) )
118112, 117eqtr2d 2316 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( Im `  B ) )  =  ( abs `  (
_i  x.  ( Im `  B ) ) ) )
119118oveq2d 5874 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) )  =  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( _i  x.  (
Im `  B )
) ) ) )
120108, 110, 1193brtr4d 4053 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  <_ 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) )
121 iftrue 3571 . . . . . . . . . 10  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
122121adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
) )
12366adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 )  =  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) )
124120, 122, 1233brtr4d 4053 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
125124ex 423 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
12630a1i 10 . . . . . . . 8  |-  ( -.  x  e.  A  -> 
0  <_  0 )
127 iffalse 3572 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  0 )
128126, 127, 723brtr4d 4053 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
129125, 128pm2.61d1 151 . . . . . 6  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  <_  if (
x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
130129ralrimivw 2627 . . . . 5  |-  ( ph  ->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) )
131 eqidd 2284 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )
132 eqidd 2284 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
13339, 35, 102, 131, 132ofrfval2 6096 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) )  <->  A. x  e.  RR  if ( x  e.  A ,  ( abs `  B
) ,  0 )  <_  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )
134130, 133mpbird 223 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  o R  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )
135 itg2le 19094 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  o R  <_ 
( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )
13637, 104, 134, 135syl3anc 1182 . . 3  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) ) )
137 itg2lecl 19093 . . 3  |-  ( ( ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  (
Re `  B )
)  +  ( abs `  ( Im `  B
) ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( ( abs `  ( Re `  B
) )  +  ( abs `  ( Im
`  B ) ) ) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  e.  RR )
13837, 95, 136, 137syl3anc 1182 . 2  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
13924, 26iblpos 19147 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
14023, 138, 139mpbir2and 888 1  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   ifcif 3565   class class class wbr 4023    e. cmpt 4077    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076    o Rcofr 6077   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738   _ici 8739    + caddc 8740    x. cmul 8742    +oocpnf 8864   RR*cxr 8866    <_ cle 8868   [,)cico 10658   [,]cicc 10659   Recre 11582   Imcim 11583   abscabs 11719   -cn->ccncf 18380  MblFncmbf 18969   S.2citg2 18971   L ^1cibl 18972
This theorem is referenced by:  iblmulc2  19185  itgabs  19189  bddmulibl  19193  itgcn  19197  ftc1a  19384  ftc1lem4  19386  itgulm  19784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-0p 19025
  Copyright terms: Public domain W3C validator