MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblabslem Unicode version

Theorem iblabslem 19178
Description: Lemma for iblabs 19179. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
iblabs.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
iblabs.2  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
iblabs.3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
iblabs.4  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L ^1 )
iblabs.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
Assertion
Ref Expression
iblabslem  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    F( x)    G( x)    V( x)

Proof of Theorem iblabslem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iblabs.3 . . 3  |-  G  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
2 iblabs.4 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e.  L ^1 )
3 iblabs.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  RR )
43iblrelem 19141 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e.  L ^1  <->  ( (
x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )  e.  RR  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) ) )
52, 4mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( F `  B ) )  e. MblFn  /\  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR ) )
65simp1d 967 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  e. MblFn )
76, 3mbfdm2 18989 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
8 mblss 18886 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
97, 8syl 15 . . . 4  |-  ( ph  ->  A  C_  RR )
10 rembl 18894 . . . . 5  |-  RR  e.  dom  vol
1110a1i 10 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
12 iftrue 3572 . . . . . 6  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
1312adantl 452 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  ( abs `  ( F `  B )
) )
143recnd 8857 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  B )  e.  CC )
1514abscld 11914 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( F `  B ) )  e.  RR )
1613, 15eqeltrd 2358 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  e.  RR )
17 eldifn 3300 . . . . . 6  |-  ( x  e.  ( RR  \  A )  ->  -.  x  e.  A )
1817adantl 452 . . . . 5  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  -.  x  e.  A )
19 iffalse 3573 . . . . 5  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 )  =  0 )
2018, 19syl 15 . . . 4  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
x  e.  A , 
( abs `  ( F `  B )
) ,  0 )  =  0 )
21 eqidd 2285 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) )  =  ( x  e.  A  |->  ( F `  B ) ) )
22 absf 11817 . . . . . . . . 9  |-  abs : CC
--> RR
2322a1i 10 . . . . . . . 8  |-  ( ph  ->  abs : CC --> RR )
2423feqmptd 5537 . . . . . . 7  |-  ( ph  ->  abs  =  ( y  e.  CC  |->  ( abs `  y ) ) )
25 fveq2 5486 . . . . . . 7  |-  ( y  =  ( F `  B )  ->  ( abs `  y )  =  ( abs `  ( F `  B )
) )
2614, 21, 24, 25fmptco 5653 . . . . . 6  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  ( F `  B ) ) )  =  ( x  e.  A  |->  ( abs `  ( F `
 B ) ) ) )
2712mpteq2ia 4103 . . . . . 6  |-  ( x  e.  A  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )  =  ( x  e.  A  |->  ( abs `  ( F `  B
) ) )
2826, 27syl6reqr 2335 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 ) )  =  ( abs  o.  ( x  e.  A  |->  ( F `
 B ) ) ) )
29 eqid 2284 . . . . . . 7  |-  ( x  e.  A  |->  ( F `
 B ) )  =  ( x  e.  A  |->  ( F `  B ) )
3014, 29fmptd 5646 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( F `  B
) ) : A --> CC )
31 ax-resscn 8790 . . . . . . . . 9  |-  RR  C_  CC
32 ssid 3198 . . . . . . . . 9  |-  CC  C_  CC
33 cncfss 18399 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
3431, 32, 33mp2an 653 . . . . . . . 8  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
35 abscncf 18401 . . . . . . . 8  |-  abs  e.  ( CC -cn-> RR )
3634, 35sselii 3178 . . . . . . 7  |-  abs  e.  ( CC -cn-> CC )
3736a1i 10 . . . . . 6  |-  ( ph  ->  abs  e.  ( CC
-cn-> CC ) )
38 cncombf 19009 . . . . . 6  |-  ( ( ( x  e.  A  |->  ( F `  B
) )  e. MblFn  /\  (
x  e.  A  |->  ( F `  B ) ) : A --> CC  /\  abs  e.  ( CC -cn-> CC ) )  ->  ( abs  o.  ( x  e.  A  |->  ( F `  B ) ) )  e. MblFn )
396, 30, 37, 38syl3anc 1182 . . . . 5  |-  ( ph  ->  ( abs  o.  (
x  e.  A  |->  ( F `  B ) ) )  e. MblFn )
4028, 39eqeltrd 2358 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  if ( x  e.  A ,  ( abs `  ( F `  B
) ) ,  0 ) )  e. MblFn )
419, 11, 16, 20, 40mbfss 18997 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )  e. MblFn )
421, 41syl5eqel 2368 . 2  |-  ( ph  ->  G  e. MblFn )
43 reex 8824 . . . . . . . . 9  |-  RR  e.  _V
4443a1i 10 . . . . . . . 8  |-  ( ph  ->  RR  e.  _V )
45 ifan 3605 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )
46 0re 8834 . . . . . . . . . . . . 13  |-  0  e.  RR
47 ifcl 3602 . . . . . . . . . . . . 13  |-  ( ( ( F `  B
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 )  e.  RR )
483, 46, 47sylancl 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR )
49 max1 10510 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( F `  B )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
5046, 3, 49sylancr 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )
51 elrege0 10742 . . . . . . . . . . . 12  |-  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo )  <->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ) )
5248, 50, 51sylanbrc 645 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
53 0le0 9823 . . . . . . . . . . . . 13  |-  0  <_  0
54 elrege0 10742 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
5546, 53, 54mpbir2an 886 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,)  +oo )
5655a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
5752, 56ifclda 3593 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,)  +oo )
)
5845, 57syl5eqel 2368 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
5958adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
60 ifan 3605 . . . . . . . . . 10  |-  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )
613renegcld 9206 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  -u ( F `  B )  e.  RR )
62 ifcl 3602 . . . . . . . . . . . . 13  |-  ( (
-u ( F `  B )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
6361, 46, 62sylancl 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR )
64 max1 10510 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  -u ( F `  B
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
6546, 61, 64sylancr 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) )
66 elrege0 10742 . . . . . . . . . . . 12  |-  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo )  <->  ( if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ) )
6763, 65, 66sylanbrc 645 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
6867, 56ifclda 3593 . . . . . . . . . 10  |-  ( ph  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ,  0 )  e.  ( 0 [,) 
+oo ) )
6960, 68syl5eqel 2368 . . . . . . . . 9  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
7069adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
71 eqidd 2285 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) ) )
72 eqidd 2285 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )
7344, 59, 70, 71, 72offval2 6057 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) ) )
7445, 60oveq12i 5832 . . . . . . . . 9  |-  ( if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 ) )
75 max0add 11791 . . . . . . . . . . . . 13  |-  ( ( F `  B )  e.  RR  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
763, 75syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( abs `  ( F `
 B ) ) )
77 iftrue 3572 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
7877adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )
79 iftrue 3572 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
8079adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) )
8178, 80oveq12d 5838 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  +  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) ) )
8276, 81, 133eqtr4d 2326 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
8382ex 423 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
84 00id 8983 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
85 iffalse 3573 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) ,  0 )  =  0 )
86 iffalse 3573 . . . . . . . . . . . 12  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) ,  0 )  =  0 )
8785, 86oveq12d 5838 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  ( 0  +  0 ) )
8884, 87, 193eqtr4a 2342 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
8983, 88pm2.61d1 151 . . . . . . . . 9  |-  ( ph  ->  ( if ( x  e.  A ,  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) ,  0 )  +  if ( x  e.  A ,  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 ) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) )
9074, 89syl5eq 2328 . . . . . . . 8  |-  ( ph  ->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 )  +  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  =  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) )
9190mpteq2dv 4108 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR  |->  ( if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 )  +  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( F `  B )
) ,  0 ) ) )
9273, 91eqtrd 2316 . . . . . 6  |-  ( ph  ->  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( F `  B )
) ,  0 ) ) )
9392, 1syl6reqr 2335 . . . . 5  |-  ( ph  ->  G  =  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )
9493fveq2d 5490 . . . 4  |-  ( ph  ->  ( S.2 `  G
)  =  ( S.2 `  ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
9558adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
9645, 85syl5eq 2328 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 )  =  0 )
9718, 96syl 15 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 )  =  0 )
98 ibar 490 . . . . . . . . 9  |-  ( x  e.  A  ->  (
0  <_  ( F `  B )  <->  ( x  e.  A  /\  0  <_  ( F `  B
) ) ) )
9998ifbid 3584 . . . . . . . 8  |-  ( x  e.  A  ->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )
10099mpteq2ia 4103 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  ( F `  B ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B ) ) ,  ( F `  B
) ,  0 ) )
1013, 6mbfpos 19002 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_ 
( F `  B
) ,  ( F `
 B ) ,  0 ) )  e. MblFn
)
102100, 101syl5eqelr 2369 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  ( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
1039, 11, 95, 97, 102mbfss 18997 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  e. MblFn )
104 eqid 2284 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )
10559, 104fmptd 5646 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
1065simp2d 968 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  e.  RR )
10769adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
10860, 86syl5eq 2328 . . . . . . 7  |-  ( -.  x  e.  A  ->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 )  =  0 )
10918, 108syl 15 . . . . . 6  |-  ( (
ph  /\  x  e.  ( RR  \  A ) )  ->  if (
( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 )  =  0 )
110 ibar 490 . . . . . . . . 9  |-  ( x  e.  A  ->  (
0  <_  -u ( F `
 B )  <->  ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) ) )
111110ifbid 3584 . . . . . . . 8  |-  ( x  e.  A  ->  if ( 0  <_  -u ( F `  B ) ,  -u ( F `  B ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) )
112111mpteq2ia 4103 . . . . . . 7  |-  ( x  e.  A  |->  if ( 0  <_  -u ( F `
 B ) , 
-u ( F `  B ) ,  0 ) )  =  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )
1133, 6mbfneg 19001 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |-> 
-u ( F `  B ) )  e. MblFn
)
11461, 113mbfpos 19002 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  if ( 0  <_  -u ( F `  B
) ,  -u ( F `  B ) ,  0 ) )  e. MblFn )
115112, 114syl5eqelr 2369 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  if ( ( x  e.  A  /\  0  <_ 
-u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )  e. MblFn )
1169, 11, 107, 109, 115mbfss 18997 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) )  e. MblFn )
117 eqid 2284 . . . . . 6  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B )
) ,  -u ( F `  B ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B ) ) , 
-u ( F `  B ) ,  0 ) )
11870, 117fmptd 5646 . . . . 5  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
1195simp3d 969 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) )  e.  RR )
120103, 105, 106, 116, 118, 119itg2add 19110 . . . 4  |-  ( ph  ->  ( S.2 `  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) )  o F  +  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  =  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
12194, 120eqtrd 2316 . . 3  |-  ( ph  ->  ( S.2 `  G
)  =  ( ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( F `
 B ) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) ) )
122106, 119readdcld 8858 . . 3  |-  ( ph  ->  ( ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( F `  B
) ) ,  ( F `  B ) ,  0 ) ) )  +  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  -u ( F `  B
) ) ,  -u ( F `  B ) ,  0 ) ) ) )  e.  RR )
123121, 122eqeltrd 2358 . 2  |-  ( ph  ->  ( S.2 `  G
)  e.  RR )
12442, 123jca 518 1  |-  ( ph  ->  ( G  e. MblFn  /\  ( S.2 `  G )  e.  RR ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   _Vcvv 2789    \ cdif 3150    C_ wss 3153   ifcif 3566   class class class wbr 4024    e. cmpt 4078    dom cdm 4688    o. ccom 4692   -->wf 5217   ` cfv 5221  (class class class)co 5820    o Fcof 6038   CCcc 8731   RRcr 8732   0cc0 8733    + caddc 8736    +oocpnf 8860    <_ cle 8864   -ucneg 9034   [,)cico 10654   abscabs 11715   -cn->ccncf 18376   volcvol 18819  MblFncmbf 18965   S.2citg2 18967   L ^1cibl 18968
This theorem is referenced by:  iblabs  19179
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cc 8057  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-ofr 6041  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-seq 11043  df-exp 11101  df-hash 11334  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-clim 11958  df-rlim 11959  df-sum 12155  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-submnd 14412  df-mulg 14488  df-cntz 14789  df-cmn 15087  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cn 16953  df-cnp 16954  df-cmp 17110  df-tx 17253  df-hmeo 17442  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-ovol 18820  df-vol 18821  df-mbf 18971  df-itg1 18972  df-itg2 18973  df-ibl 18974  df-0p 19021
  Copyright terms: Public domain W3C validator