MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmulc2 Unicode version

Theorem iblmulc2 19591
Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
iblmulc2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L ^1 )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem iblmulc2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itgmulc2.1 . . 3  |-  ( ph  ->  C  e.  CC )
2 itgmulc2.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
3 itgmulc2.3 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
4 iblmbf 19528 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
53, 4syl 16 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
61, 2, 5mbfmulc2 19424 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
7 ifan 3723 . . . . . 6  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
81adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
95, 2mbfmptcl 19398 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
108, 9mulcld 9043 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
1110adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
12 elfzelz 10993 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
1312ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  k  e.  ZZ )
14 ax-icn 8984 . . . . . . . . . . . . . . 15  |-  _i  e.  CC
15 ine0 9403 . . . . . . . . . . . . . . 15  |-  _i  =/=  0
16 expclz 11335 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1714, 15, 16mp3an12 1269 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1813, 17syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
_i ^ k )  e.  CC )
19 expne0i 11341 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
2014, 15, 19mp3an12 1269 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
2113, 20syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
_i ^ k )  =/=  0 )
2211, 18, 21divcld 9724 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( C  x.  B
)  /  ( _i
^ k ) )  e.  CC )
2322recld 11928 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  e.  RR )
24 0re 9026 . . . . . . . . . . 11  |-  0  e.  RR
25 ifcl 3720 . . . . . . . . . . 11  |-  ( ( ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 )  e.  RR )
2623, 24, 25sylancl 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2726rexrd 9069 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
28 max1 10707 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
2924, 23, 28sylancr 645 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) )
30 elxrge0 10942 . . . . . . . . 9  |-  ( if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo )  <->  ( if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ) )
3127, 29, 30sylanbrc 646 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
32 0xr 9066 . . . . . . . . . 10  |-  0  e.  RR*
33 0le0 10015 . . . . . . . . . 10  |-  0  <_  0
34 elxrge0 10942 . . . . . . . . . 10  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
3532, 33, 34mpbir2an 887 . . . . . . . . 9  |-  0  e.  ( 0 [,]  +oo )
3635a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,]  +oo ) )
3731, 36ifclda 3711 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  e.  ( 0 [,]  +oo ) )
3837adantr 452 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  e.  ( 0 [,]  +oo ) )
397, 38syl5eqel 2473 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
40 eqid 2389 . . . . 5  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
4139, 40fmptd 5834 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
42 reex 9016 . . . . . . . . . . 11  |-  RR  e.  _V
4342a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  _V )
441abscld 12167 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  C
)  e.  RR )
4544adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  C )  e.  RR )
469abscld 12167 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
479absge0d 12175 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
48 elrege0 10941 . . . . . . . . . . . . 13  |-  ( ( abs `  B )  e.  ( 0 [,) 
+oo )  <->  ( ( abs `  B )  e.  RR  /\  0  <_ 
( abs `  B
) ) )
4946, 47, 48sylanbrc 646 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,)  +oo ) )
50 elrege0 10941 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
5124, 33, 50mpbir2an 887 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,)  +oo )
5251a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
5349, 52ifclda 3711 . . . . . . . . . . 11  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
5453adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,) 
+oo ) )
55 fconstmpt 4863 . . . . . . . . . . 11  |-  ( RR 
X.  { ( abs `  C ) } )  =  ( x  e.  RR  |->  ( abs `  C
) )
5655a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( RR  X.  {
( abs `  C
) } )  =  ( x  e.  RR  |->  ( abs `  C ) ) )
57 eqidd 2390 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )
5843, 45, 54, 56, 57offval2 6263 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  X.  { ( abs `  C
) } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )
59 oveq2 6030 . . . . . . . . . . . 12  |-  ( if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
)  ->  ( ( abs `  C )  x.  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  =  ( ( abs `  C
)  x.  ( abs `  B ) ) )
60 oveq2 6030 . . . . . . . . . . . 12  |-  ( if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  0  ->  (
( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( ( abs `  C )  x.  0 ) )
6159, 60ifsb 3693 . . . . . . . . . . 11  |-  ( ( abs `  C )  x.  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  C
)  x.  ( abs `  B ) ) ,  ( ( abs `  C
)  x.  0 ) )
628, 9absmuld 12185 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  =  ( ( abs `  C
)  x.  ( abs `  B ) ) )
6362ifeq1da 3709 . . . . . . . . . . . 12  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( ( abs `  C
)  x.  ( abs `  B ) ) ,  ( ( abs `  C
)  x.  0 ) ) )
6444recnd 9049 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  C
)  e.  CC )
6564mul01d 9199 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  C
)  x.  0 )  =  0 )
6665ifeq2d 3699 . . . . . . . . . . . 12  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6763, 66eqtr3d 2423 . . . . . . . . . . 11  |-  ( ph  ->  if ( x  e.  A ,  ( ( abs `  C )  x.  ( abs `  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6861, 67syl5eq 2433 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6968mpteq2dv 4239 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
7058, 69eqtrd 2421 . . . . . . . 8  |-  ( ph  ->  ( ( RR  X.  { ( abs `  C
) } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
7170fveq2d 5674 . . . . . . 7  |-  ( ph  ->  ( S.2 `  (
( RR  X.  {
( abs `  C
) } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) ) )
72 eqid 2389 . . . . . . . . 9  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
7354, 72fmptd 5834 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
742, 3iblabs 19589 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 )
7546, 47iblpos 19553 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
7674, 75mpbid 202 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) )
7776simprd 450 . . . . . . . 8  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
78 abscl 12012 . . . . . . . . . 10  |-  ( C  e.  CC  ->  ( abs `  C )  e.  RR )
79 absge0 12021 . . . . . . . . . 10  |-  ( C  e.  CC  ->  0  <_  ( abs `  C
) )
80 elrege0 10941 . . . . . . . . . 10  |-  ( ( abs `  C )  e.  ( 0 [,) 
+oo )  <->  ( ( abs `  C )  e.  RR  /\  0  <_ 
( abs `  C
) ) )
8178, 79, 80sylanbrc 646 . . . . . . . . 9  |-  ( C  e.  CC  ->  ( abs `  C )  e.  ( 0 [,)  +oo ) )
821, 81syl 16 . . . . . . . 8  |-  ( ph  ->  ( abs `  C
)  e.  ( 0 [,)  +oo ) )
8373, 77, 82itg2mulc 19508 . . . . . . 7  |-  ( ph  ->  ( S.2 `  (
( RR  X.  {
( abs `  C
) } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )  =  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) ) )
8471, 83eqtr3d 2423 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  =  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) ) )
8544, 77remulcld 9051 . . . . . 6  |-  ( ph  ->  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) )  e.  RR )
8684, 85eqeltrd 2463 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  e.  RR )
8786adantr 452 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) )  e.  RR )
8810abscld 12167 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  RR )
8988rexrd 9069 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e. 
RR* )
9010absge0d 12175 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  ( C  x.  B )
) )
91 elxrge0 10942 . . . . . . . . . 10  |-  ( ( abs `  ( C  x.  B ) )  e.  ( 0 [,] 
+oo )  <->  ( ( abs `  ( C  x.  B ) )  e. 
RR*  /\  0  <_  ( abs `  ( C  x.  B ) ) ) )
9289, 90, 91sylanbrc 646 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  ( 0 [,]  +oo ) )
9335a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,]  +oo ) )
9492, 93ifclda 3711 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  0 )  e.  ( 0 [,]  +oo ) )
9594adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 )  e.  ( 0 [,] 
+oo ) )
96 eqid 2389 . . . . . . 7  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
9795, 96fmptd 5834 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
9897adantr 452 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
9922releabsd 12182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  <_  ( abs `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) )
10011, 18, 21absdivd 12186 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( ( C  x.  B )  / 
( _i ^ k
) ) )  =  ( ( abs `  ( C  x.  B )
)  /  ( abs `  ( _i ^ k
) ) ) )
101 elfznn0 11017 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  NN0 )
102101ad2antlr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  k  e.  NN0 )
103 absexp 12038 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
_i ^ k ) )  =  ( ( abs `  _i ) ^ k ) )
10414, 102, 103sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( _i ^
k ) )  =  ( ( abs `  _i ) ^ k ) )
105 absi 12020 . . . . . . . . . . . . . . . . . 18  |-  ( abs `  _i )  =  1
106105oveq1i 6032 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  _i ) ^ k )  =  ( 1 ^ k
)
107 1exp 11338 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ZZ  ->  (
1 ^ k )  =  1 )
10813, 107syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
1 ^ k )  =  1 )
109106, 108syl5eq 2433 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  _i ) ^ k )  =  1 )
110104, 109eqtrd 2421 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( _i ^
k ) )  =  1 )
111110oveq2d 6038 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  ( C  x.  B )
)  /  ( abs `  ( _i ^ k
) ) )  =  ( ( abs `  ( C  x.  B )
)  /  1 ) )
11288recnd 9049 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  CC )
113112adantlr 696 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  CC )
114113div1d 9716 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  ( C  x.  B )
)  /  1 )  =  ( abs `  ( C  x.  B )
) )
115100, 111, 1143eqtrd 2425 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( ( C  x.  B )  / 
( _i ^ k
) ) )  =  ( abs `  ( C  x.  B )
) )
11699, 115breqtrd 4179 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  <_  ( abs `  ( C  x.  B )
) )
11790adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  0  <_  ( abs `  ( C  x.  B )
) )
118 breq1 4158 . . . . . . . . . . . . 13  |-  ( ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  -> 
( ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) )  <_  ( abs `  ( C  x.  B ) )  <->  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_ 
( abs `  ( C  x.  B )
) ) )
119 breq1 4158 . . . . . . . . . . . . 13  |-  ( 0  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  -> 
( 0  <_  ( abs `  ( C  x.  B ) )  <->  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_ 
( abs `  ( C  x.  B )
) ) )
120118, 119ifboth 3715 . . . . . . . . . . . 12  |-  ( ( ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) )  <_  ( abs `  ( C  x.  B
) )  /\  0  <_  ( abs `  ( C  x.  B )
) )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  <_  ( abs `  ( C  x.  B
) ) )
121116, 117, 120syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  <_  ( abs `  ( C  x.  B
) ) )
122 iftrue 3690 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
123122adantl 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
124 iftrue 3690 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  ( abs `  ( C  x.  B )
) )
125124adantl 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  ( abs `  ( C  x.  B )
) )
126121, 123, 1253brtr4d 4185 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
127126ex 424 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) )
12833a1i 11 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
0  <_  0 )
129 iffalse 3691 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  0 )
130 iffalse 3691 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  0 )
131128, 129, 1303brtr4d 4185 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
132127, 131pm2.61d1 153 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
1337, 132syl5eqbr 4188 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )
134133ralrimivw 2735 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) )
13542a1i 11 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  RR  e.  _V )
13695adantlr 696 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  e.  ( 0 [,] 
+oo ) )
137 eqidd 2390 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )
138 eqidd 2390 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) )
139135, 39, 136, 137, 138ofrfval2 6264 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
140134, 139mpbird 224 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
141 itg2le 19500 . . . . 5  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) ) )
14241, 98, 140, 141syl3anc 1184 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) ) )
143 itg2lecl 19499 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) ) )  <_ 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) ) )  e.  RR )
14441, 87, 142, 143syl3anc 1184 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  e.  RR )
145144ralrimiva 2734 . 2  |-  ( ph  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
146 eqidd 2390 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )
147 eqidd 2390 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  =  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) )
148146, 147, 10isibl2 19527 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  x.  B ) )  e.  L ^1  <->  ( (
x  e.  A  |->  ( C  x.  B ) )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR ) ) )
1496, 145, 148mpbir2and 889 1  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   _Vcvv 2901   ifcif 3684   {csn 3759   class class class wbr 4155    e. cmpt 4209    X. cxp 4818   -->wf 5392   ` cfv 5396  (class class class)co 6022    o Fcof 6244    o Rcofr 6245   CCcc 8923   RRcr 8924   0cc0 8925   1c1 8926   _ici 8927    x. cmul 8930    +oocpnf 9052   RR*cxr 9054    <_ cle 9056    / cdiv 9611   3c3 9984   NN0cn0 10155   ZZcz 10216   [,)cico 10852   [,]cicc 10853   ...cfz 10977   ^cexp 11311   Recre 11831   abscabs 11968  MblFncmbf 19375   S.2citg2 19377   L ^1cibl 19378
This theorem is referenced by:  itgmulc2lem1  19592  itgmulc2lem2  19593  itgmulc2  19594  itgabs  19595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cc 8250  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004  ax-mulf 9005
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-disj 4126  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-ofr 6247  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-omul 6667  df-er 6843  df-map 6958  df-pm 6959  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-oi 7414  df-card 7761  df-acn 7764  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ioo 10854  df-ioc 10855  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-fl 11131  df-seq 11253  df-exp 11312  df-hash 11548  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-clim 12211  df-rlim 12212  df-sum 12409  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-starv 13473  df-sca 13474  df-vsca 13475  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-hom 13482  df-cco 13483  df-rest 13579  df-topn 13580  df-topgen 13596  df-pt 13597  df-prds 13600  df-xrs 13655  df-0g 13656  df-gsum 13657  df-qtop 13662  df-imas 13663  df-xps 13665  df-mre 13740  df-mrc 13741  df-acs 13743  df-mnd 14619  df-submnd 14668  df-mulg 14744  df-cntz 15045  df-cmn 15343  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-cnfld 16629  df-top 16888  df-bases 16890  df-topon 16891  df-topsp 16892  df-cn 17215  df-cnp 17216  df-cmp 17374  df-tx 17517  df-hmeo 17710  df-xms 18261  df-ms 18262  df-tms 18263  df-cncf 18781  df-ovol 19230  df-vol 19231  df-mbf 19381  df-itg1 19382  df-itg2 19383  df-ibl 19384  df-0p 19431
  Copyright terms: Public domain W3C validator