MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmulc2 Unicode version

Theorem iblmulc2 19201
Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1  |-  ( ph  ->  C  e.  CC )
itgmulc2.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
Assertion
Ref Expression
iblmulc2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L ^1 )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem iblmulc2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itgmulc2.1 . . 3  |-  ( ph  ->  C  e.  CC )
2 itgmulc2.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
3 itgmulc2.3 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L ^1 )
4 iblmbf 19138 . . . 4  |-  ( ( x  e.  A  |->  B )  e.  L ^1 
->  ( x  e.  A  |->  B )  e. MblFn )
53, 4syl 15 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
61, 2, 5mbfmulc2 19034 . 2  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
7 ifan 3617 . . . . . 6  |-  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  =  if ( x  e.  A ,  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) ,  0 )
81adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
95, 2mbfmptcl 19008 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
108, 9mulcld 8871 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
1110adantlr 695 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
12 elfzelz 10814 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  ZZ )
1312ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  k  e.  ZZ )
14 ax-icn 8812 . . . . . . . . . . . . . . 15  |-  _i  e.  CC
15 ine0 9231 . . . . . . . . . . . . . . 15  |-  _i  =/=  0
16 expclz 11144 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  e.  CC )
1714, 15, 16mp3an12 1267 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  e.  CC )
1813, 17syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
_i ^ k )  e.  CC )
19 expne0i 11150 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  _i  =/=  0  /\  k  e.  ZZ )  ->  (
_i ^ k )  =/=  0 )
2014, 15, 19mp3an12 1267 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  (
_i ^ k )  =/=  0 )
2113, 20syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
_i ^ k )  =/=  0 )
2211, 18, 21divcld 9552 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( C  x.  B
)  /  ( _i
^ k ) )  e.  CC )
2322recld 11695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  e.  RR )
24 0re 8854 . . . . . . . . . . 11  |-  0  e.  RR
25 ifcl 3614 . . . . . . . . . . 11  |-  ( ( ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 )  e.  RR )
2623, 24, 25sylancl 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR )
2726rexrd 8897 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR* )
28 max1 10530 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  e.  RR )  -> 
0  <_  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
2924, 23, 28sylancr 644 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  0  <_  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) )
30 elxrge0 10763 . . . . . . . . 9  |-  ( if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo )  <->  ( if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  RR*  /\  0  <_  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ) )
3127, 29, 30sylanbrc 645 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
32 0xr 8894 . . . . . . . . . 10  |-  0  e.  RR*
33 0le0 9843 . . . . . . . . . 10  |-  0  <_  0
34 elxrge0 10763 . . . . . . . . . 10  |-  ( 0  e.  ( 0 [,] 
+oo )  <->  ( 0  e.  RR*  /\  0  <_  0 ) )
3532, 33, 34mpbir2an 886 . . . . . . . . 9  |-  0  e.  ( 0 [,]  +oo )
3635a1i 10 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,]  +oo ) )
3731, 36ifclda 3605 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  e.  ( 0 [,]  +oo ) )
3837adantr 451 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  e.  ( 0 [,]  +oo ) )
397, 38syl5eqel 2380 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  e.  ( 0 [,]  +oo ) )
40 eqid 2296 . . . . 5  |-  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
4139, 40fmptd 5700 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
42 reex 8844 . . . . . . . . . . 11  |-  RR  e.  _V
4342a1i 10 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  _V )
441abscld 11934 . . . . . . . . . . 11  |-  ( ph  ->  ( abs `  C
)  e.  RR )
4544adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  C )  e.  RR )
469abscld 11934 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  RR )
479absge0d 11942 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  B
) )
48 elrege0 10762 . . . . . . . . . . . . 13  |-  ( ( abs `  B )  e.  ( 0 [,) 
+oo )  <->  ( ( abs `  B )  e.  RR  /\  0  <_ 
( abs `  B
) ) )
4946, 47, 48sylanbrc 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  B )  e.  ( 0 [,)  +oo ) )
50 elrege0 10762 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( 0 [,) 
+oo )  <->  ( 0  e.  RR  /\  0  <_  0 ) )
5124, 33, 50mpbir2an 886 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,)  +oo )
5251a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,)  +oo ) )
5349, 52ifclda 3605 . . . . . . . . . . 11  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  B ) ,  0 )  e.  ( 0 [,)  +oo ) )
5453adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  B
) ,  0 )  e.  ( 0 [,) 
+oo ) )
55 fconstmpt 4748 . . . . . . . . . . 11  |-  ( RR 
X.  { ( abs `  C ) } )  =  ( x  e.  RR  |->  ( abs `  C
) )
5655a1i 10 . . . . . . . . . 10  |-  ( ph  ->  ( RR  X.  {
( abs `  C
) } )  =  ( x  e.  RR  |->  ( abs `  C ) ) )
57 eqidd 2297 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )
5843, 45, 54, 56, 57offval2 6111 . . . . . . . . 9  |-  ( ph  ->  ( ( RR  X.  { ( abs `  C
) } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )
59 oveq2 5882 . . . . . . . . . . . 12  |-  ( if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  ( abs `  B
)  ->  ( ( abs `  C )  x.  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  =  ( ( abs `  C
)  x.  ( abs `  B ) ) )
60 oveq2 5882 . . . . . . . . . . . 12  |-  ( if ( x  e.  A ,  ( abs `  B
) ,  0 )  =  0  ->  (
( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( ( abs `  C )  x.  0 ) )
6159, 60ifsb 3587 . . . . . . . . . . 11  |-  ( ( abs `  C )  x.  if ( x  e.  A ,  ( abs `  B ) ,  0 ) )  =  if ( x  e.  A ,  ( ( abs `  C
)  x.  ( abs `  B ) ) ,  ( ( abs `  C
)  x.  0 ) )
628, 9absmuld 11952 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  =  ( ( abs `  C
)  x.  ( abs `  B ) ) )
6362ifeq1da 3603 . . . . . . . . . . . 12  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( ( abs `  C
)  x.  ( abs `  B ) ) ,  ( ( abs `  C
)  x.  0 ) ) )
6444recnd 8877 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  C
)  e.  CC )
6564mul01d 9027 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( abs `  C
)  x.  0 )  =  0 )
6665ifeq2d 3593 . . . . . . . . . . . 12  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6763, 66eqtr3d 2330 . . . . . . . . . . 11  |-  ( ph  ->  if ( x  e.  A ,  ( ( abs `  C )  x.  ( abs `  B
) ) ,  ( ( abs `  C
)  x.  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6861, 67syl5eq 2340 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
6968mpteq2dv 4123 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR  |->  ( ( abs `  C
)  x.  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
7058, 69eqtrd 2328 . . . . . . . 8  |-  ( ph  ->  ( ( RR  X.  { ( abs `  C
) } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) )  =  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
7170fveq2d 5545 . . . . . . 7  |-  ( ph  ->  ( S.2 `  (
( RR  X.  {
( abs `  C
) } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )  =  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) ) )
72 eqid 2296 . . . . . . . . 9  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) )
7354, 72fmptd 5700 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) : RR --> ( 0 [,)  +oo ) )
742, 3iblabs 19199 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 )
7546, 47iblpos 19163 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e.  L ^1 
<->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) ) )
7674, 75mpbid 201 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( abs `  B
) )  e. MblFn  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B ) ,  0 ) ) )  e.  RR ) )
7776simprd 449 . . . . . . . 8  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) )  e.  RR )
78 abscl 11779 . . . . . . . . . 10  |-  ( C  e.  CC  ->  ( abs `  C )  e.  RR )
79 absge0 11788 . . . . . . . . . 10  |-  ( C  e.  CC  ->  0  <_  ( abs `  C
) )
80 elrege0 10762 . . . . . . . . . 10  |-  ( ( abs `  C )  e.  ( 0 [,) 
+oo )  <->  ( ( abs `  C )  e.  RR  /\  0  <_ 
( abs `  C
) ) )
8178, 79, 80sylanbrc 645 . . . . . . . . 9  |-  ( C  e.  CC  ->  ( abs `  C )  e.  ( 0 [,)  +oo ) )
821, 81syl 15 . . . . . . . 8  |-  ( ph  ->  ( abs `  C
)  e.  ( 0 [,)  +oo ) )
8373, 77, 82itg2mulc 19118 . . . . . . 7  |-  ( ph  ->  ( S.2 `  (
( RR  X.  {
( abs `  C
) } )  o F  x.  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  B
) ,  0 ) ) ) )  =  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) ) )
8471, 83eqtr3d 2330 . . . . . 6  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  =  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) ) )
8544, 77remulcld 8879 . . . . . 6  |-  ( ph  ->  ( ( abs `  C
)  x.  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  B
) ,  0 ) ) ) )  e.  RR )
8684, 85eqeltrd 2370 . . . . 5  |-  ( ph  ->  ( S.2 `  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  e.  RR )
8786adantr 451 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) )  e.  RR )
8810abscld 11934 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  RR )
8988rexrd 8897 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e. 
RR* )
9010absge0d 11942 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  0  <_  ( abs `  ( C  x.  B )
) )
91 elxrge0 10763 . . . . . . . . . 10  |-  ( ( abs `  ( C  x.  B ) )  e.  ( 0 [,] 
+oo )  <->  ( ( abs `  ( C  x.  B ) )  e. 
RR*  /\  0  <_  ( abs `  ( C  x.  B ) ) ) )
9289, 90, 91sylanbrc 645 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  ( 0 [,]  +oo ) )
9335a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  -.  x  e.  A )  ->  0  e.  ( 0 [,]  +oo ) )
9492, 93ifclda 3605 . . . . . . . 8  |-  ( ph  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B
) ) ,  0 )  e.  ( 0 [,]  +oo ) )
9594adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 )  e.  ( 0 [,] 
+oo ) )
96 eqid 2296 . . . . . . 7  |-  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
9795, 96fmptd 5700 . . . . . 6  |-  ( ph  ->  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
9897adantr 451 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,]  +oo ) )
9922releabsd 11949 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  <_  ( abs `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) )
10011, 18, 21absdivd 11953 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( ( C  x.  B )  / 
( _i ^ k
) ) )  =  ( ( abs `  ( C  x.  B )
)  /  ( abs `  ( _i ^ k
) ) ) )
101 elfznn0 10838 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 0 ... 3 )  ->  k  e.  NN0 )
102101ad2antlr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  k  e.  NN0 )
103 absexp 11805 . . . . . . . . . . . . . . . . 17  |-  ( ( _i  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
_i ^ k ) )  =  ( ( abs `  _i ) ^ k ) )
10414, 102, 103sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( _i ^
k ) )  =  ( ( abs `  _i ) ^ k ) )
105 absi 11787 . . . . . . . . . . . . . . . . . 18  |-  ( abs `  _i )  =  1
106105oveq1i 5884 . . . . . . . . . . . . . . . . 17  |-  ( ( abs `  _i ) ^ k )  =  ( 1 ^ k
)
107 1exp 11147 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ZZ  ->  (
1 ^ k )  =  1 )
10813, 107syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
1 ^ k )  =  1 )
109106, 108syl5eq 2340 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  _i ) ^ k )  =  1 )
110104, 109eqtrd 2328 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( _i ^
k ) )  =  1 )
111110oveq2d 5890 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  ( C  x.  B )
)  /  ( abs `  ( _i ^ k
) ) )  =  ( ( abs `  ( C  x.  B )
)  /  1 ) )
11288recnd 8877 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  CC )
113112adantlr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( C  x.  B ) )  e.  CC )
114113div1d 9544 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
( abs `  ( C  x.  B )
)  /  1 )  =  ( abs `  ( C  x.  B )
) )
115100, 111, 1143eqtrd 2332 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  ( abs `  ( ( C  x.  B )  / 
( _i ^ k
) ) )  =  ( abs `  ( C  x.  B )
) )
11699, 115breqtrd 4063 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  <_  ( abs `  ( C  x.  B )
) )
11790adantlr 695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  0  <_  ( abs `  ( C  x.  B )
) )
118 breq1 4042 . . . . . . . . . . . . 13  |-  ( ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  -> 
( ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) )  <_  ( abs `  ( C  x.  B ) )  <->  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_ 
( abs `  ( C  x.  B )
) ) )
119 breq1 4042 . . . . . . . . . . . . 13  |-  ( 0  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  -> 
( 0  <_  ( abs `  ( C  x.  B ) )  <->  if (
0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_ 
( abs `  ( C  x.  B )
) ) )
120118, 119ifboth 3609 . . . . . . . . . . . 12  |-  ( ( ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) )  <_  ( abs `  ( C  x.  B
) )  /\  0  <_  ( abs `  ( C  x.  B )
) )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  <_  ( abs `  ( C  x.  B
) ) )
121116, 117, 120syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( 0  <_  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 )  <_  ( abs `  ( C  x.  B
) ) )
122 iftrue 3584 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
123122adantl 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  if ( 0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )
124 iftrue 3584 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  ( abs `  ( C  x.  B )
) )
125124adantl 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  ( abs `  ( C  x.  B )
) )
126121, 123, 1253brtr4d 4069 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  A )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
127126ex 423 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) )
12833a1i 10 . . . . . . . . . 10  |-  ( -.  x  e.  A  -> 
0  <_  0 )
129 iffalse 3585 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  =  0 )
130 iffalse 3585 . . . . . . . . . 10  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  =  0 )
131128, 129, 1303brtr4d 4069 . . . . . . . . 9  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
132127, 131pm2.61d1 151 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( x  e.  A ,  if ( 0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ,  0 ) ,  0 )  <_  if (
x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) )
1337, 132syl5eqbr 4072 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )
134133ralrimivw 2640 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) )
13542a1i 10 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  RR  e.  _V )
13695adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... 3
) )  /\  x  e.  RR )  ->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 )  e.  ( 0 [,] 
+oo ) )
137 eqidd 2297 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )
138 eqidd 2297 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) )
139135, 39, 136, 137, 138ofrfval2 6112 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) )  <->  A. x  e.  RR  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 )  <_  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
140134, 139mpbird 223 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )
141 itg2le 19110 . . . . 5  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  o R  <_  (
x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B )
) ,  0 ) ) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) ) )
14241, 98, 140, 141syl3anc 1182 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  <_  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) ) )
143 itg2lecl 19109 . . . 4  |-  ( ( ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) : RR --> ( 0 [,]  +oo )  /\  ( S.2 `  ( x  e.  RR  |->  if ( x  e.  A ,  ( abs `  ( C  x.  B ) ) ,  0 ) ) )  e.  RR  /\  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) ) )  <_ 
( S.2 `  ( x  e.  RR  |->  if ( x  e.  A , 
( abs `  ( C  x.  B )
) ,  0 ) ) ) )  -> 
( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( C  x.  B )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ,  0 ) ) )  e.  RR )
14441, 87, 142, 143syl3anc 1182 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... 3
) )  ->  ( S.2 `  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )  e.  RR )
145144ralrimiva 2639 . 2  |-  ( ph  ->  A. k  e.  ( 0 ... 3 ) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR )
146 eqidd 2297 . . 3  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ,  0 ) ) )
147 eqidd 2297 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) )  =  ( Re `  ( ( C  x.  B )  /  (
_i ^ k ) ) ) )
148146, 147, 10isibl2 19137 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  x.  B ) )  e.  L ^1  <->  ( (
x  e.  A  |->  ( C  x.  B ) )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  (
x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( C  x.  B
)  /  ( _i
^ k ) ) ) ) ,  ( Re `  ( ( C  x.  B )  /  ( _i ^
k ) ) ) ,  0 ) ) )  e.  RR ) ) )
1496, 145, 148mpbir2and 888 1  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L ^1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801   ifcif 3578   {csn 3653   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092    o Rcofr 6093   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754   _ici 8755    x. cmul 8758    +oocpnf 8880   RR*cxr 8882    <_ cle 8884    / cdiv 9439   3c3 9812   NN0cn0 9981   ZZcz 10040   [,)cico 10674   [,]cicc 10675   ...cfz 10798   ^cexp 11120   Recre 11598   abscabs 11735  MblFncmbf 18985   S.2citg2 18987   L ^1cibl 18988
This theorem is referenced by:  itgmulc2lem1  19202  itgmulc2lem2  19203  itgmulc2  19204  itgabs  19205
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cn 16973  df-cnp 16974  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-ovol 18840  df-vol 18841  df-mbf 18991  df-itg1 18992  df-itg2 18993  df-ibl 18994  df-0p 19041
  Copyright terms: Public domain W3C validator