MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccntr Unicode version

Theorem iccntr 18320
Description: The interior of a closed interval in the standard topology on  RR is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
iccntr  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
Dummy variable  x is distinct from all other variables.

Proof of Theorem iccntr
StepHypRef Expression
1 rexr 8872 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 8872 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  RR* )
3 icc0 10698 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  =  (/)  <->  B  <  A ) )
41, 2, 3syl2an 465 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A [,] B )  =  (/)  <->  B  <  A ) )
54biimpar 473 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( A [,] B )  =  (/) )
65fveq2d 5489 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  =  ( ( int `  ( topGen `  ran  (,) )
) `  (/) ) )
7 retop 18264 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  Top
8 ntr0 16812 . . . . . . . 8  |-  ( (
topGen `  ran  (,) )  e.  Top  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  (/) )  =  (/) )
97, 8ax-mp 10 . . . . . . 7  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  (/) )  =  (/)
10 0ss 3484 . . . . . . 7  |-  (/)  C_  ( { A ,  B }  u.  ( A (,) B
) )
119, 10eqsstri 3209 . . . . . 6  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  (/) )  C_  ( { A ,  B }  u.  ( A (,) B
) )
1211a1i 12 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  (/) )  C_  ( { A ,  B }  u.  ( A (,) B ) ) )
136, 12eqsstrd 3213 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  <  A
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) 
C_  ( { A ,  B }  u.  ( A (,) B ) ) )
14 iccssre 10725 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
15 uniretop 18265 . . . . . . . 8  |-  RR  =  U. ( topGen `  ran  (,) )
1615ntrss2 16788 . . . . . . 7  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  C_  RR )  ->  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A [,] B ) )  C_  ( A [,] B ) )
177, 14, 16sylancr 646 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  C_  ( A [,] B ) )
1817adantr 453 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) 
C_  ( A [,] B ) )
191, 2anim12i 551 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
20 uncom 3320 . . . . . . . 8  |-  ( { A ,  B }  u.  ( A (,) B
) )  =  ( ( A (,) B
)  u.  { A ,  B } )
21 prunioo 10758 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
2220, 21syl5eq 2328 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( { A ,  B }  u.  ( A (,) B
) )  =  ( A [,] B ) )
23223expa 1153 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  A  <_  B )  ->  ( { A ,  B }  u.  ( A (,) B ) )  =  ( A [,] B ) )
2419, 23sylan 459 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( { A ,  B }  u.  ( A (,) B
) )  =  ( A [,] B ) )
2518, 24sseqtr4d 3216 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <_  B
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) 
C_  ( { A ,  B }  u.  ( A (,) B ) ) )
26 simpr 449 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
27 simpl 445 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
2813, 25, 26, 27ltlecasei 8923 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  C_  ( { A ,  B }  u.  ( A (,) B ) ) )
2915ntropn 16780 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  C_  RR )  ->  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A [,] B ) )  e.  ( topGen ` 
ran  (,) ) )
307, 14, 29sylancr 646 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  e.  ( topGen `  ran  (,) )
)
31 eqid 2284 . . . . . . . . . 10  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
3231rexmet 18291 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( * Met `  RR )
33 eqid 2284 . . . . . . . . . . 11  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
3431, 33tgioo 18296 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
3534mopni2 18033 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( * Met `  RR )  /\  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  e.  ( topGen `  ran  (,) )  /\  A  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  ->  E. x  e.  RR+  ( A ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
3632, 35mp3an1 1266 . . . . . . . 8  |-  ( ( ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  e.  ( topGen `  ran  (,) )  /\  A  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  ->  E. x  e.  RR+  ( A ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
3730, 36sylan 459 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  ->  E. x  e.  RR+  ( A ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
3827ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  A  e.  RR )
39 rphalfcl 10373 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
4039adantl 454 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( x  / 
2 )  e.  RR+ )
4138, 40ltsubrpd 10413 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  -  ( x  /  2
) )  <  A
)
4240rpred 10385 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( x  / 
2 )  e.  RR )
4338, 42resubcld 9206 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  -  ( x  /  2
) )  e.  RR )
4443, 38ltnled 8961 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( A  -  ( x  / 
2 ) )  < 
A  <->  -.  A  <_  ( A  -  ( x  /  2 ) ) ) )
4541, 44mpbid 203 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  -.  A  <_  ( A  -  ( x  /  2 ) ) )
46 rpre 10355 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR )
4746adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  x  e.  RR )
48 rphalflt 10375 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  ( x  /  2 )  < 
x )
4948adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( x  / 
2 )  <  x
)
5042, 47, 38, 49ltsub2dd 9380 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  -  x )  <  ( A  -  ( x  /  2 ) ) )
5138, 47readdcld 8857 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  +  x )  e.  RR )
52 ltaddrp 10381 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  x  e.  RR+ )  ->  A  <  ( A  +  x ) )
5338, 52sylancom 650 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  A  <  ( A  +  x )
)
5443, 38, 51, 41, 53lttrd 8972 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  -  ( x  /  2
) )  <  ( A  +  x )
)
5538, 47resubcld 9206 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  -  x )  e.  RR )
5655rexrd 8876 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  -  x )  e.  RR* )
5751rexrd 8876 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  +  x )  e.  RR* )
58 elioo2 10691 . . . . . . . . . . . . . 14  |-  ( ( ( A  -  x
)  e.  RR*  /\  ( A  +  x )  e.  RR* )  ->  (
( A  -  (
x  /  2 ) )  e.  ( ( A  -  x ) (,) ( A  +  x ) )  <->  ( ( A  -  ( x  /  2 ) )  e.  RR  /\  ( A  -  x )  <  ( A  -  (
x  /  2 ) )  /\  ( A  -  ( x  / 
2 ) )  < 
( A  +  x
) ) ) )
5956, 57, 58syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( A  -  ( x  / 
2 ) )  e.  ( ( A  -  x ) (,) ( A  +  x )
)  <->  ( ( A  -  ( x  / 
2 ) )  e.  RR  /\  ( A  -  x )  < 
( A  -  (
x  /  2 ) )  /\  ( A  -  ( x  / 
2 ) )  < 
( A  +  x
) ) ) )
6043, 50, 54, 59mpbir3and 1137 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  -  ( x  /  2
) )  e.  ( ( A  -  x
) (,) ( A  +  x ) ) )
6131bl2ioo 18292 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( A ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) x )  =  ( ( A  -  x ) (,) ( A  +  x )
) )
6238, 47, 61syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  =  ( ( A  -  x ) (,) ( A  +  x ) ) )
6360, 62eleqtrrd 2361 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( A  -  ( x  /  2
) )  e.  ( A ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x ) )
64 ssel 3175 . . . . . . . . . . 11  |-  ( ( A ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  ->  ( ( A  -  ( x  / 
2 ) )  e.  ( A ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) x )  -> 
( A  -  (
x  /  2 ) )  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A [,] B ) ) ) )
6563, 64syl5com 28 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( A ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  ->  ( A  -  ( x  /  2
) )  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
6617ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) )  C_  ( A [,] B ) )
6766sseld 3180 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( A  -  ( x  / 
2 ) )  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  -> 
( A  -  (
x  /  2 ) )  e.  ( A [,] B ) ) )
68 elicc2 10709 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  -  ( x  /  2
) )  e.  ( A [,] B )  <-> 
( ( A  -  ( x  /  2
) )  e.  RR  /\  A  <_  ( A  -  ( x  / 
2 ) )  /\  ( A  -  (
x  /  2 ) )  <_  B )
) )
69 simp2 958 . . . . . . . . . . . 12  |-  ( ( ( A  -  (
x  /  2 ) )  e.  RR  /\  A  <_  ( A  -  ( x  /  2
) )  /\  ( A  -  ( x  /  2 ) )  <_  B )  ->  A  <_  ( A  -  ( x  /  2
) ) )
7068, 69syl6bi 221 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  -  ( x  /  2
) )  e.  ( A [,] B )  ->  A  <_  ( A  -  ( x  /  2 ) ) ) )
7170ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( A  -  ( x  / 
2 ) )  e.  ( A [,] B
)  ->  A  <_  ( A  -  ( x  /  2 ) ) ) )
7265, 67, 713syld 53 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( A ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  ->  A  <_  ( A  -  ( x  /  2 ) ) ) )
7345, 72mtod 170 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  -.  ( A
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
7473nrexdv 2647 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  ->  -.  E. x  e.  RR+  ( A (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
7537, 74pm2.65da 561 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
7634mopni2 18033 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( * Met `  RR )  /\  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  e.  ( topGen `  ran  (,) )  /\  B  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  ->  E. x  e.  RR+  ( B ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
7732, 76mp3an1 1266 . . . . . . . 8  |-  ( ( ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  e.  ( topGen `  ran  (,) )  /\  B  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  ->  E. x  e.  RR+  ( B ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
7830, 77sylan 459 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  ->  E. x  e.  RR+  ( B ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
7926ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  B  e.  RR )
8039adantl 454 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( x  / 
2 )  e.  RR+ )
8179, 80ltaddrpd 10414 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  B  <  ( B  +  ( x  /  2 ) ) )
8280rpred 10385 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( x  / 
2 )  e.  RR )
8379, 82readdcld 8857 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  +  ( x  /  2
) )  e.  RR )
8479, 83ltnled 8961 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  < 
( B  +  ( x  /  2 ) )  <->  -.  ( B  +  ( x  / 
2 ) )  <_  B ) )
8581, 84mpbid 203 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  -.  ( B  +  ( x  / 
2 ) )  <_  B )
8646adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  x  e.  RR )
8779, 86resubcld 9206 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  -  x )  e.  RR )
88 ltsubrp 10380 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  RR  /\  x  e.  RR+ )  -> 
( B  -  x
)  <  B )
8979, 88sylancom 650 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  -  x )  <  B
)
9087, 79, 83, 89, 81lttrd 8972 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  -  x )  <  ( B  +  ( x  /  2 ) ) )
9148adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( x  / 
2 )  <  x
)
9282, 86, 79, 91ltadd2dd 8970 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  +  ( x  /  2
) )  <  ( B  +  x )
)
9387rexrd 8876 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  -  x )  e.  RR* )
9479, 86readdcld 8857 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  +  x )  e.  RR )
9594rexrd 8876 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  +  x )  e.  RR* )
96 elioo2 10691 . . . . . . . . . . . . . 14  |-  ( ( ( B  -  x
)  e.  RR*  /\  ( B  +  x )  e.  RR* )  ->  (
( B  +  ( x  /  2 ) )  e.  ( ( B  -  x ) (,) ( B  +  x ) )  <->  ( ( B  +  ( x  /  2 ) )  e.  RR  /\  ( B  -  x )  <  ( B  +  ( x  /  2 ) )  /\  ( B  +  ( x  / 
2 ) )  < 
( B  +  x
) ) ) )
9793, 95, 96syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( B  +  ( x  / 
2 ) )  e.  ( ( B  -  x ) (,) ( B  +  x )
)  <->  ( ( B  +  ( x  / 
2 ) )  e.  RR  /\  ( B  -  x )  < 
( B  +  ( x  /  2 ) )  /\  ( B  +  ( x  / 
2 ) )  < 
( B  +  x
) ) ) )
9883, 90, 92, 97mpbir3and 1137 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  +  ( x  /  2
) )  e.  ( ( B  -  x
) (,) ( B  +  x ) ) )
9931bl2ioo 18292 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( B ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) x )  =  ( ( B  -  x ) (,) ( B  +  x )
) )
10079, 86, 99syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  =  ( ( B  -  x ) (,) ( B  +  x ) ) )
10198, 100eleqtrrd 2361 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( B  +  ( x  /  2
) )  e.  ( B ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x ) )
102 ssel 3175 . . . . . . . . . . 11  |-  ( ( B ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  ->  ( ( B  +  ( x  / 
2 ) )  e.  ( B ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) x )  -> 
( B  +  ( x  /  2 ) )  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A [,] B ) ) ) )
103101, 102syl5com 28 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( B ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  ->  ( B  +  ( x  /  2
) )  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
10417ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) )  C_  ( A [,] B ) )
105104sseld 3180 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( B  +  ( x  / 
2 ) )  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  -> 
( B  +  ( x  /  2 ) )  e.  ( A [,] B ) ) )
106 elicc2 10709 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  +  ( x  /  2
) )  e.  ( A [,] B )  <-> 
( ( B  +  ( x  /  2
) )  e.  RR  /\  A  <_  ( B  +  ( x  / 
2 ) )  /\  ( B  +  (
x  /  2 ) )  <_  B )
) )
107 simp3 959 . . . . . . . . . . . 12  |-  ( ( ( B  +  ( x  /  2 ) )  e.  RR  /\  A  <_  ( B  +  ( x  /  2
) )  /\  ( B  +  ( x  /  2 ) )  <_  B )  -> 
( B  +  ( x  /  2 ) )  <_  B )
108106, 107syl6bi 221 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  +  ( x  /  2
) )  e.  ( A [,] B )  ->  ( B  +  ( x  /  2
) )  <_  B
) )
109108ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( B  +  ( x  / 
2 ) )  e.  ( A [,] B
)  ->  ( B  +  ( x  / 
2 ) )  <_  B ) )
110103, 105, 1093syld 53 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  ( ( B ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  ->  ( B  +  ( x  /  2
) )  <_  B
) )
11185, 110mtod 170 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  /\  x  e.  RR+ )  ->  -.  ( B
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
112111nrexdv 2647 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  ->  -.  E. x  e.  RR+  ( B (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) x )  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
11378, 112pm2.65da 561 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
114 eleq1 2344 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A [,] B ) )  <->  A  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
115114notbid 287 . . . . . . 7  |-  ( x  =  A  ->  ( -.  x  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  <->  -.  A  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
116 eleq1 2344 . . . . . . . 8  |-  ( x  =  B  ->  (
x  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( A [,] B ) )  <->  B  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
117116notbid 287 . . . . . . 7  |-  ( x  =  B  ->  ( -.  x  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  <->  -.  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
118115, 117ralprg 3683 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A. x  e. 
{ A ,  B }  -.  x  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  <->  ( -.  A  e.  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) )  /\  -.  B  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) ) )
11975, 113, 118mpbir2and 890 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A. x  e.  { A ,  B }  -.  x  e.  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
120 disjr 3497 . . . . 5  |-  ( ( ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  i^i 
{ A ,  B } )  =  (/)  <->  A. x  e.  { A ,  B }  -.  x  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
121119, 120sylibr 205 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) )  i^i 
{ A ,  B } )  =  (/) )
122 disjssun 3513 . . . 4  |-  ( ( ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  i^i 
{ A ,  B } )  =  (/)  ->  ( ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) )  C_  ( { A ,  B }  u.  ( A (,) B ) )  <->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) 
C_  ( A (,) B ) ) )
123121, 122syl 17 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) )  C_  ( { A ,  B }  u.  ( A (,) B ) )  <->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) 
C_  ( A (,) B ) ) )
12428, 123mpbid 203 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  C_  ( A (,) B ) )
125 iooretop 18269 . . . 4  |-  ( A (,) B )  e.  ( topGen `  ran  (,) )
126 ioossicc 10729 . . . 4  |-  ( A (,) B )  C_  ( A [,] B )
12715ssntr 16789 . . . 4  |-  ( ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B ) 
C_  RR )  /\  ( ( A (,) B )  e.  (
topGen `  ran  (,) )  /\  ( A (,) B
)  C_  ( A [,] B ) ) )  ->  ( A (,) B )  C_  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
128125, 126, 127mpanr12 668 . . 3  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  C_  RR )  ->  ( A (,) B )  C_  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )
1297, 14, 128sylancr 646 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B
)  C_  ( ( int `  ( topGen `  ran  (,) ) ) `  ( A [,] B ) ) )
130124, 129eqssd 3197 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2544   E.wrex 2545    u. cun 3151    i^i cin 3152    C_ wss 3153   (/)c0 3456   {cpr 3642   class class class wbr 4024    X. cxp 4686   ran crn 4689    |` cres 4690    o. ccom 4692   ` cfv 5221  (class class class)co 5819   RRcr 8731    + caddc 8735   RR*cxr 8861    < clt 8862    <_ cle 8863    - cmin 9032    / cdiv 9418   2c2 9790   RR+crp 10349   (,)cioo 10650   [,]cicc 10653   abscabs 11713   topGenctg 13336   * Metcxmt 16363   ballcbl 16365   MetOpencmopn 16366   Topctop 16625   intcnt 16748
This theorem is referenced by:  rolle  19331  cmvth  19332  mvth  19333  dvlip  19334  dvlipcn  19335  dvlip2  19336  c1liplem1  19337  dvgt0lem1  19343  dvle  19348  lhop1lem  19354  dvcnvrelem1  19358  dvcvx  19361  dvfsumabs  19364  ftc1cn  19384  ftc2  19385  ftc2ditglem  19386  itgparts  19388  itgsubstlem  19389  efcvx  19819  pige3  19879  logccv  20004  lhe4.4ex1a  26945  itgsin0pilem1  27143  itgsinexplem1  27147
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ico 10656  df-icc 10657  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-topgen 13338  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-top 16630  df-bases 16632  df-topon 16633  df-ntr 16751
  Copyright terms: Public domain W3C validator