Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icodiamlt Unicode version

Theorem icodiamlt 26905
Description: Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
icodiamlt  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) ) )  ->  ( abs `  ( C  -  D ) )  < 
( B  -  A
) )

Proof of Theorem icodiamlt
StepHypRef Expression
1 rexr 8877 . . . 4  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elico2 10714 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
3 elico2 10714 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( D  e.  ( A [,) B )  <-> 
( D  e.  RR  /\  A  <_  D  /\  D  <  B ) ) )
42, 3anbi12d 691 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  <->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
54biimpd 198 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
61, 5sylan2 460 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) ) )
7 simplr 731 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  B  e.  RR )
87recnd 8861 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  B  e.  CC )
9 simpll 730 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  e.  RR )
109recnd 8861 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  e.  CC )
118, 10negsubdi2d 9173 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  -u ( B  -  A )  =  ( A  -  B ) )
129, 7resubcld 9211 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  e.  RR )
13 simprl1 1000 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  C  e.  RR )
1413, 7resubcld 9211 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  B )  e.  RR )
15 simprr1 1003 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  D  e.  RR )
1613, 15resubcld 9211 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  e.  RR )
17 simprl2 1001 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  <_  C
)
189, 13, 7, 17lesub1dd 9388 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  <_  ( C  -  B )
)
19 simprr3 1005 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  D  <  B
)
2015, 7, 13, 19ltsub2dd 9385 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  B )  <  ( C  -  D )
)
2112, 14, 16, 18, 20lelttrd 8974 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( A  -  B )  <  ( C  -  D )
)
2211, 21eqbrtrd 4043 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  -u ( B  -  A )  <  ( C  -  D )
)
237, 15resubcld 9211 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  D )  e.  RR )
247, 9resubcld 9211 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  A )  e.  RR )
25 simprl3 1002 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  C  <  B
)
2613, 7, 15, 25ltsub1dd 9384 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  <  ( B  -  D )
)
27 simprr2 1004 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  A  <_  D
)
289, 15, 7, 27lesub2dd 9389 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( B  -  D )  <_  ( B  -  A )
)
2916, 23, 24, 26, 28ltletrd 8976 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( C  -  D )  <  ( B  -  A )
)
3016, 24absltd 11912 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( ( abs `  ( C  -  D
) )  <  ( B  -  A )  <->  (
-u ( B  -  A )  <  ( C  -  D )  /\  ( C  -  D
)  <  ( B  -  A ) ) ) )
3122, 29, 30mpbir2and 888 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) ) )  ->  ( abs `  ( C  -  D )
)  <  ( B  -  A ) )
3231ex 423 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( C  e.  RR  /\  A  <_  C  /\  C  < 
B )  /\  ( D  e.  RR  /\  A  <_  D  /\  D  < 
B ) )  -> 
( abs `  ( C  -  D )
)  <  ( B  -  A ) ) )
336, 32syld 40 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) )  ->  ( abs `  ( C  -  D
) )  <  ( B  -  A )
) )
3433imp 418 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  ( A [,) B
)  /\  D  e.  ( A [,) B ) ) )  ->  ( abs `  ( C  -  D ) )  < 
( B  -  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038   [,)cico 10658   abscabs 11719
This theorem is referenced by:  irrapxlem2  26908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721
  Copyright terms: Public domain W3C validator