HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem ididg 4138
Description: A set is identical to itself. (The proof was shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ididg

Proof of Theorem ididg
StepHypRef Expression
1 eqid 1929 . 2
2 ideqg 4136 . 2
31, 2mpbiri 223 1
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1425   wcel 1427   class class class wbr 3358   cid 3607
This theorem is referenced by:  opelxpex2 4139  issetid 4140  fvi 4837  dfpo2 14696  eltids 15693  deref 15956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1342  ax-6 1343  ax-7 1344  ax-gen 1345  ax-8 1429  ax-10 1430  ax-11 1431  ax-12 1432  ax-14 1434  ax-17 1441  ax-9 1456  ax-4 1462  ax-16 1640  ax-ext 1911  ax-sep 3454  ax-nul 3463  ax-pr 3523
This theorem depends on definitions:  df-bi 175  df-or 361  df-an 362  df-ex 1347  df-sb 1602  df-eu 1829  df-mo 1830  df-clab 1917  df-cleq 1922  df-clel 1925  df-ne 2049  df-v 2337  df-dif 2637  df-un 2639  df-in 2641  df-ss 2643  df-nul 2900  df-sn 3080  df-pr 3081  df-op 3083  df-br 3359  df-opab 3413  df-id 3611  df-xp 4005  df-rel 4006
Copyright terms: Public domain