HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem ididg 4419
Description: A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ididg  |-  ( A  e.  V  ->  A  _I  A )

Proof of Theorem ididg
StepHypRef Expression
1 eqid 2064 . 2  |-  A  =  A
2 ideqg 4417 . 2  |-  ( A  e.  V  ->  ( A  _I  A  <->  A  =  A ) )
31, 2mpbiri 222 1  |-  ( A  e.  V  ->  A  _I  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1520    e. wcel 1522   class class class wbr 3586    _I cid 3855
This theorem is referenced by:  issetid  4420  opelresiOLD  4548  opelresi  4549  fvi  5098  dfpo2  21984  deref  23105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1442  ax-6 1443  ax-7 1444  ax-gen 1445  ax-8 1524  ax-11 1525  ax-14 1527  ax-17 1529  ax-12o 1562  ax-10 1576  ax-9 1582  ax-4 1589  ax-16 1775  ax-ext 2046  ax-sep 3701  ax-nul 3709  ax-pr 3769
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3an 898  df-ex 1447  df-sb 1736  df-eu 1958  df-mo 1959  df-clab 2052  df-cleq 2057  df-clel 2060  df-ne 2184  df-ral 2278  df-rex 2279  df-rab 2281  df-v 2477  df-dif 2796  df-un 2798  df-in 2800  df-ss 2804  df-nul 3073  df-if 3182  df-sn 3261  df-pr 3262  df-op 3264  df-br 3587  df-opab 3641  df-id 3860  df-xp 4270  df-rel 4271
Copyright terms: Public domain