HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem ididg 4150
Description: A set is identical to itself. (The proof was shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ididg

Proof of Theorem ididg
StepHypRef Expression
1 eqid 1917 . 2
2 ideqg 4148 . 2
31, 2mpbiri 221 1
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1413   wcel 1415   class class class wbr 3358   cid 3607
This theorem is referenced by:  opelxpex2 4151  issetid 4152  fvi 4856  dfpo2 15614  eltids 16611  deref 16874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1330  ax-6 1331  ax-7 1332  ax-gen 1333  ax-8 1417  ax-10 1418  ax-11 1419  ax-12 1420  ax-14 1422  ax-17 1429  ax-9 1444  ax-4 1450  ax-16 1628  ax-ext 1899  ax-sep 3454  ax-nul 3463  ax-pr 3523
This theorem depends on definitions:  df-bi 174  df-or 357  df-an 358  df-ex 1335  df-sb 1590  df-eu 1817  df-mo 1818  df-clab 1905  df-cleq 1910  df-clel 1913  df-ne 2036  df-v 2324  df-dif 2635  df-un 2637  df-in 2639  df-ss 2641  df-nul 2899  df-sn 3079  df-pr 3080  df-op 3082  df-br 3359  df-opab 3413  df-id 3611  df-xp 4009  df-rel 4010
Copyright terms: Public domain