HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem ididg 4417
Description: A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ididg  |-  ( A  e.  V  ->  A  _I  A )

Proof of Theorem ididg
StepHypRef Expression
1 eqid 2062 . 2  |-  A  =  A
2 ideqg 4415 . 2  |-  ( A  e.  V  ->  ( A  _I  A  <->  A  =  A ) )
31, 2mpbiri 222 1  |-  ( A  e.  V  ->  A  _I  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1518    e. wcel 1520   class class class wbr 3584    _I cid 3853
This theorem is referenced by:  issetid  4418  opelresiOLD  4546  opelresi  4547  fvi  5094  dfpo2  21275  deref  22397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1440  ax-6 1441  ax-7 1442  ax-gen 1443  ax-8 1522  ax-11 1523  ax-14 1525  ax-17 1527  ax-12o 1560  ax-10 1574  ax-9 1580  ax-4 1587  ax-16 1773  ax-ext 2044  ax-sep 3699  ax-nul 3707  ax-pr 3767
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3an 896  df-ex 1445  df-sb 1734  df-eu 1956  df-mo 1957  df-clab 2050  df-cleq 2055  df-clel 2058  df-ne 2182  df-ral 2276  df-rex 2277  df-rab 2279  df-v 2475  df-dif 2794  df-un 2796  df-in 2798  df-ss 2802  df-nul 3071  df-if 3180  df-sn 3259  df-pr 3260  df-op 3262  df-br 3585  df-opab 3639  df-id 3858  df-xp 4268  df-rel 4269
Copyright terms: Public domain