HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem ididg 4165
Description: A set is identical to itself. (The proof was shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ididg

Proof of Theorem ididg
StepHypRef Expression
1 eqid 1918 . 2
2 ideqg 4163 . 2
31, 2mpbiri 222 1
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1414   wcel 1416   class class class wbr 3370   cid 3619
This theorem is referenced by:  opelxpex2 4166  issetid 4167  fvi 4890  dfpo2 15966  eltids 16961  deref 17215
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1331  ax-6 1332  ax-7 1333  ax-gen 1334  ax-8 1418  ax-10 1419  ax-11 1420  ax-12 1421  ax-14 1423  ax-17 1430  ax-9 1445  ax-4 1451  ax-16 1629  ax-ext 1900  ax-sep 3466  ax-nul 3475  ax-pr 3535
This theorem depends on definitions:  df-bi 175  df-or 358  df-an 359  df-ex 1336  df-sb 1591  df-eu 1818  df-mo 1819  df-clab 1906  df-cleq 1911  df-clel 1914  df-ne 2037  df-v 2326  df-dif 2637  df-un 2639  df-in 2641  df-ss 2645  df-nul 2903  df-sn 3085  df-pr 3086  df-op 3088  df-br 3371  df-opab 3425  df-id 3623  df-xp 4021  df-rel 4022
Copyright terms: Public domain