Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinside Unicode version

Theorem idinside 24709
Description: Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Scott Fenton, 7-Oct-2013.)
Assertion
Ref Expression
idinside  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )

Proof of Theorem idinside
StepHypRef Expression
1 simp1 955 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  N  e.  NN )
2 simp3l 983 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
3 simp3r 984 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
4 cgrid2 24628 . . . . . 6  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. C ,  C >.Cgr
<. C ,  D >.  ->  C  =  D )
)
51, 2, 2, 3, 4syl13anc 1184 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D ) )
6 simp2l 981 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
7 axbtwnid 24569 . . . . . 6  |-  ( ( N  e.  NN  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) )  ->  ( C  Btwn  <. A ,  A >.  ->  C  =  A ) )
81, 2, 6, 7syl3anc 1182 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  A >.  ->  C  =  A )
)
9 opeq1 3798 . . . . . . . . 9  |-  ( C  =  A  ->  <. C ,  C >.  =  <. A ,  C >. )
10 opeq1 3798 . . . . . . . . 9  |-  ( C  =  A  ->  <. C ,  D >.  =  <. A ,  D >. )
119, 10breq12d 4038 . . . . . . . 8  |-  ( C  =  A  ->  ( <. C ,  C >.Cgr <. C ,  D >.  <->  <. A ,  C >.Cgr <. A ,  D >. ) )
1211imbi1d 308 . . . . . . 7  |-  ( C  =  A  ->  (
( <. C ,  C >.Cgr
<. C ,  D >.  ->  C  =  D )  <->  (
<. A ,  C >.Cgr <. A ,  D >.  ->  C  =  D )
) )
1312biimpcd 215 . . . . . 6  |-  ( (
<. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D )  ->  ( C  =  A  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  C  =  D ) ) )
14 ax-1 5 . . . . . 6  |-  ( C  =  D  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  C  =  D )
)
1513, 14syl8 65 . . . . 5  |-  ( (
<. C ,  C >.Cgr <. C ,  D >.  ->  C  =  D )  ->  ( C  =  A  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  C  =  D ) ) ) )
165, 8, 15sylsyld 52 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  A >.  -> 
( <. A ,  C >.Cgr
<. A ,  D >.  -> 
( <. B ,  C >.Cgr
<. B ,  D >.  ->  C  =  D )
) ) )
17163impd 1165 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  A >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
18 opeq2 3799 . . . . . 6  |-  ( A  =  B  ->  <. A ,  A >.  =  <. A ,  B >. )
1918breq2d 4037 . . . . 5  |-  ( A  =  B  ->  ( C  Btwn  <. A ,  A >.  <-> 
C  Btwn  <. A ,  B >. ) )
20193anbi1d 1256 . . . 4  |-  ( A  =  B  ->  (
( C  Btwn  <. A ,  A >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. )  <-> 
( C  Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) ) )
2120imbi1d 308 . . 3  |-  ( A  =  B  ->  (
( ( C  Btwn  <. A ,  A >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D )  <->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
2217, 21syl5ib 210 . 2  |-  ( A  =  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
23 simpr1 961 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  N  e.  NN )
24 simpr2l 1014 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
25 simpr2r 1015 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  B  e.  ( EE `  N ) )
26 simpr3l 1016 . . . . . 6  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  C  e.  ( EE `  N ) )
27 btwncolinear1 24694 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  A  Colinear  <. B ,  C >. ) )
2823, 24, 25, 26, 27syl13anc 1184 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( C  Btwn  <. A ,  B >.  ->  A  Colinear  <. B ,  C >. ) )
29 idd 21 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  ->  <. A ,  C >.Cgr
<. A ,  D >. ) )
30 idd 21 . . . . 5  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( <. B ,  C >.Cgr <. B ,  D >.  ->  <. B ,  C >.Cgr
<. B ,  D >. ) )
3128, 29, 303anim123d 1259 . . . 4  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr <. B ,  D >. ) ) )
32 simp1 955 . . . . . . . . 9  |-  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  A  Colinear  <. B ,  C >. )
3332anim2i 552 . . . . . . . 8  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )
)
34 3simpc 954 . . . . . . . . 9  |-  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )
3534adantl 452 . . . . . . . 8  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr <. B ,  D >. ) )
3633, 35jca 518 . . . . . . 7  |-  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) )  ->  ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  C >.Cgr <. A ,  D >.  /\  <. B ,  C >.Cgr
<. B ,  D >. ) ) )
37 lineid 24708 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( ( A  =/=  B  /\  A  Colinear  <. B ,  C >. )  /\  ( <. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. ) )  ->  C  =  D ) )
3836, 37syl5 28 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( A  =/=  B  /\  ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. ) )  ->  C  =  D ) )
3938exp3a 425 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( A  =/= 
B  ->  ( ( A  Colinear  <. B ,  C >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
4039impcom 419 . . . 4  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( A 
Colinear 
<. B ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
4131, 40syld 40 . . 3  |-  ( ( A  =/=  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
4241ex 423 . 2  |-  ( A  =/=  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\ 
<. A ,  C >.Cgr <. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) ) )
4322, 42pm2.61ine 2524 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( C 
Btwn  <. A ,  B >.  /\  <. A ,  C >.Cgr
<. A ,  D >.  /\ 
<. B ,  C >.Cgr <. B ,  D >. )  ->  C  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   <.cop 3645   class class class wbr 4025   ` cfv 5257   NNcn 9748   EEcee 24518    Btwn cbtwn 24519  Cgrccgr 24520    Colinear ccolin 24662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-oadd 6485  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-sup 7196  df-oi 7227  df-card 7574  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-seq 11049  df-exp 11107  df-hash 11340  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-clim 11964  df-sum 12161  df-ee 24521  df-btwn 24522  df-cgr 24523  df-ofs 24608  df-ifs 24664  df-cgr3 24665  df-colinear 24666  df-fs 24667
  Copyright terms: Public domain W3C validator