Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idltrn Unicode version

Theorem idltrn 30264
Description: The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idltrn.b  |-  B  =  ( Base `  K
)
idltrn.h  |-  H  =  ( LHyp `  K
)
idltrn.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
idltrn  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )

Proof of Theorem idltrn
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idltrn.b . . 3  |-  B  =  ( Base `  K
)
2 idltrn.h . . 3  |-  H  =  ( LHyp `  K
)
3 eqid 2387 . . 3  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
41, 2, 3idldil 30228 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  ( ( LDil `  K ) `  W
) )
5 simpll 731 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simplrr 738 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  q  e.  ( Atoms `  K )
)
7 simprr 734 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  q
( le `  K
) W )
8 eqid 2387 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
9 eqid 2387 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
10 eqid 2387 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
11 eqid 2387 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
128, 9, 10, 11, 2lhpmat 30144 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( q  e.  ( Atoms `  K )  /\  -.  q ( le
`  K ) W ) )  ->  (
q ( meet `  K
) W )  =  ( 0. `  K
) )
135, 6, 7, 12syl12anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( meet `  K ) W )  =  ( 0. `  K ) )
141, 11atbase 29404 . . . . . . . . 9  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
15 fvresi 5863 . . . . . . . . 9  |-  ( q  e.  B  ->  (
(  _I  |`  B ) `
 q )  =  q )
166, 14, 153syl 19 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (  _I  |`  B ) `  q )  =  q )
1716oveq2d 6036 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
( (  _I  |`  B ) `
 q ) )  =  ( q (
join `  K )
q ) )
18 simplll 735 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  K  e.  HL )
19 eqid 2387 . . . . . . . . 9  |-  ( join `  K )  =  (
join `  K )
2019, 11hlatjidm 29483 . . . . . . . 8  |-  ( ( K  e.  HL  /\  q  e.  ( Atoms `  K ) )  -> 
( q ( join `  K ) q )  =  q )
2118, 6, 20syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
q )  =  q )
2217, 21eqtrd 2419 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
( (  _I  |`  B ) `
 q ) )  =  q )
2322oveq1d 6035 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W )  =  ( q (
meet `  K ) W ) )
24 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  p  e.  ( Atoms `  K )
)
251, 11atbase 29404 . . . . . . . . . 10  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
26 fvresi 5863 . . . . . . . . . 10  |-  ( p  e.  B  ->  (
(  _I  |`  B ) `
 p )  =  p )
2724, 25, 263syl 19 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (  _I  |`  B ) `  p )  =  p )
2827oveq2d 6036 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
( (  _I  |`  B ) `
 p ) )  =  ( p (
join `  K )
p ) )
2919, 11hlatjidm 29483 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  p  e.  ( Atoms `  K ) )  -> 
( p ( join `  K ) p )  =  p )
3018, 24, 29syl2anc 643 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
p )  =  p )
3128, 30eqtrd 2419 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
( (  _I  |`  B ) `
 p ) )  =  p )
3231oveq1d 6035 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( p (
meet `  K ) W ) )
33 simprl 733 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  p
( le `  K
) W )
348, 9, 10, 11, 2lhpmat 30144 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )  ->  (
p ( meet `  K
) W )  =  ( 0. `  K
) )
355, 24, 33, 34syl12anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( meet `  K ) W )  =  ( 0. `  K ) )
3632, 35eqtrd 2419 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( 0. `  K ) )
3713, 23, 363eqtr4rd 2430 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W ) )
3837ex 424 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) ) )  ->  ( ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W )  ->  ( ( p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W ) ) )
3938ralrimivva 2741 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le
`  K ) W  /\  -.  q ( le `  K ) W )  ->  (
( p ( join `  K ) ( (  _I  |`  B ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( (  _I  |`  B ) `  q ) ) (
meet `  K ) W ) ) )
40 idltrn.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
418, 19, 9, 11, 2, 3, 40isltrn 30233 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  B )  e.  T  <->  ( (  _I  |`  B )  e.  ( ( LDil `  K
) `  W )  /\  A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le
`  K ) W  /\  -.  q ( le `  K ) W )  ->  (
( p ( join `  K ) ( (  _I  |`  B ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( (  _I  |`  B ) `  q ) ) (
meet `  K ) W ) ) ) ) )
424, 39, 41mpbir2and 889 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   class class class wbr 4153    _I cid 4434    |` cres 4820   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   meetcmee 14329   0.cp0 14393   Atomscatm 29378   HLchlt 29465   LHypclh 30098   LDilcldil 30214   LTrncltrn 30215
This theorem is referenced by:  trlid0  30290  tgrpgrplem  30863  tendoid  30887  tendo0cl  30904  cdlemkid2  31038  cdlemkid3N  31047  cdlemkid4  31048  cdlemkid5  31049  cdlemk35s-id  31052  dva0g  31142  dian0  31154  dia0  31167  dvhgrp  31222  dvh0g  31226  dvheveccl  31227  dvhopN  31231  dihmeetlem4preN  31421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-map 6956  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-lat 14402  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-lhyp 30102  df-laut 30103  df-ldil 30218  df-ltrn 30219
  Copyright terms: Public domain W3C validator