Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idltrn Unicode version

Theorem idltrn 29589
Description: The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idltrn.b  |-  B  =  ( Base `  K
)
idltrn.h  |-  H  =  ( LHyp `  K
)
idltrn.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
idltrn  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )

Proof of Theorem idltrn
StepHypRef Expression
1 idltrn.b . . 3  |-  B  =  ( Base `  K
)
2 idltrn.h . . 3  |-  H  =  ( LHyp `  K
)
3 eqid 2258 . . 3  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
41, 2, 3idldil 29553 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  ( ( LDil `  K ) `  W
) )
5 simpll 733 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simplrr 740 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  q  e.  ( Atoms `  K )
)
7 simprr 736 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  q
( le `  K
) W )
8 eqid 2258 . . . . . . 7  |-  ( le
`  K )  =  ( le `  K
)
9 eqid 2258 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
10 eqid 2258 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
11 eqid 2258 . . . . . . 7  |-  ( Atoms `  K )  =  (
Atoms `  K )
128, 9, 10, 11, 2lhpmat 29469 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( q  e.  ( Atoms `  K )  /\  -.  q ( le
`  K ) W ) )  ->  (
q ( meet `  K
) W )  =  ( 0. `  K
) )
135, 6, 7, 12syl12anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( meet `  K ) W )  =  ( 0. `  K ) )
141, 11atbase 28729 . . . . . . . . 9  |-  ( q  e.  ( Atoms `  K
)  ->  q  e.  B )
15 fvresi 5645 . . . . . . . . 9  |-  ( q  e.  B  ->  (
(  _I  |`  B ) `
 q )  =  q )
166, 14, 153syl 20 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (  _I  |`  B ) `  q )  =  q )
1716oveq2d 5808 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
( (  _I  |`  B ) `
 q ) )  =  ( q (
join `  K )
q ) )
18 simplll 737 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  K  e.  HL )
19 eqid 2258 . . . . . . . . 9  |-  ( join `  K )  =  (
join `  K )
2019, 11hlatjidm 28808 . . . . . . . 8  |-  ( ( K  e.  HL  /\  q  e.  ( Atoms `  K ) )  -> 
( q ( join `  K ) q )  =  q )
2118, 6, 20syl2anc 645 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
q )  =  q )
2217, 21eqtrd 2290 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( q
( join `  K )
( (  _I  |`  B ) `
 q ) )  =  q )
2322oveq1d 5807 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W )  =  ( q (
meet `  K ) W ) )
24 simplrl 739 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  p  e.  ( Atoms `  K )
)
251, 11atbase 28729 . . . . . . . . . 10  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
26 fvresi 5645 . . . . . . . . . 10  |-  ( p  e.  B  ->  (
(  _I  |`  B ) `
 p )  =  p )
2724, 25, 263syl 20 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (  _I  |`  B ) `  p )  =  p )
2827oveq2d 5808 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
( (  _I  |`  B ) `
 p ) )  =  ( p (
join `  K )
p ) )
2919, 11hlatjidm 28808 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  p  e.  ( Atoms `  K ) )  -> 
( p ( join `  K ) p )  =  p )
3018, 24, 29syl2anc 645 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
p )  =  p )
3128, 30eqtrd 2290 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( join `  K )
( (  _I  |`  B ) `
 p ) )  =  p )
3231oveq1d 5807 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( p (
meet `  K ) W ) )
33 simprl 735 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  -.  p
( le `  K
) W )
348, 9, 10, 11, 2lhpmat 29469 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )  ->  (
p ( meet `  K
) W )  =  ( 0. `  K
) )
355, 24, 33, 34syl12anc 1185 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( p
( meet `  K ) W )  =  ( 0. `  K ) )
3632, 35eqtrd 2290 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( 0. `  K ) )
3713, 23, 363eqtr4rd 2301 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K )
) )  /\  ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W ) )  ->  ( (
p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W ) )
3837ex 425 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  ( Atoms `  K )  /\  q  e.  ( Atoms `  K ) ) )  ->  ( ( -.  p ( le `  K ) W  /\  -.  q ( le `  K ) W )  ->  ( ( p ( join `  K
) ( (  _I  |`  B ) `  p
) ) ( meet `  K ) W )  =  ( ( q ( join `  K
) ( (  _I  |`  B ) `  q
) ) ( meet `  K ) W ) ) )
3938ralrimivva 2610 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le
`  K ) W  /\  -.  q ( le `  K ) W )  ->  (
( p ( join `  K ) ( (  _I  |`  B ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( (  _I  |`  B ) `  q ) ) (
meet `  K ) W ) ) )
40 idltrn.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
418, 19, 9, 11, 2, 3, 40isltrn 29558 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( (  _I  |`  B )  e.  T  <->  ( (  _I  |`  B )  e.  ( ( LDil `  K
) `  W )  /\  A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) ( ( -.  p ( le
`  K ) W  /\  -.  q ( le `  K ) W )  ->  (
( p ( join `  K ) ( (  _I  |`  B ) `  p ) ) (
meet `  K ) W )  =  ( ( q ( join `  K ) ( (  _I  |`  B ) `  q ) ) (
meet `  K ) W ) ) ) ) )
424, 39, 41mpbir2and 893 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   class class class wbr 3997    _I cid 4276    |` cres 4663   ` cfv 4673  (class class class)co 5792   Basecbs 13111   lecple 13178   joincjn 14041   meetcmee 14042   0.cp0 14106   Atomscatm 28703   HLchlt 28790   LHypclh 29423   LDilcldil 29539   LTrncltrn 29540
This theorem is referenced by:  trlid0  29615  tgrpgrplem  30188  tendoid  30212  tendo0cl  30229  cdlemkid2  30363  cdlemkid3N  30372  cdlemkid4  30373  cdlemkid5  30374  cdlemk35s-id  30377  dva0g  30467  dian0  30479  dia0  30492  dvhgrp  30547  dvh0g  30551  dvheveccl  30552  dvhopN  30556  dihmeetlem4preN  30746
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-lat 14115  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-lhyp 29427  df-laut 29428  df-ldil 29543  df-ltrn 29544
  Copyright terms: Public domain W3C validator