Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomrootle Unicode version

Theorem idomrootle 27017
Description: No element of an integral domain can have more than  N  N-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
idomrootle.b  |-  B  =  ( Base `  R
)
idomrootle.e  |-  .^  =  (.g
`  (mulGrp `  R )
)
Assertion
Ref Expression
idomrootle  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 { y  e.  B  |  ( N 
.^  y )  =  X } )  <_  N )
Distinct variable groups:    y, B    y, N    y, R    y, X
Allowed substitution hint:    .^ ( y)

Proof of Theorem idomrootle
StepHypRef Expression
1 eqid 2366 . . 3  |-  (Poly1 `  R
)  =  (Poly1 `  R
)
2 eqid 2366 . . 3  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  R ) )
3 eqid 2366 . . 3  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
4 eqid 2366 . . 3  |-  (eval1 `  R
)  =  (eval1 `  R
)
5 eqid 2366 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
6 eqid 2366 . . 3  |-  ( 0g
`  (Poly1 `  R ) )  =  ( 0g `  (Poly1 `  R ) )
7 simp1 956 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e. IDomn )
8 isidom 16255 . . . . . . . . 9  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
98simplbi 446 . . . . . . . 8  |-  ( R  e. IDomn  ->  R  e.  CRing )
107, 9syl 15 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  CRing )
11 crngrng 15561 . . . . . . 7  |-  ( R  e.  CRing  ->  R  e.  Ring )
1210, 11syl 15 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  Ring )
131ply1rng 16536 . . . . . 6  |-  ( R  e.  Ring  ->  (Poly1 `  R
)  e.  Ring )
1412, 13syl 15 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (Poly1 `  R )  e.  Ring )
15 rnggrp 15556 . . . . 5  |-  ( (Poly1 `  R )  e.  Ring  -> 
(Poly1 `
 R )  e. 
Grp )
1614, 15syl 15 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (Poly1 `  R )  e.  Grp )
17 eqid 2366 . . . . . . 7  |-  (mulGrp `  (Poly1 `  R ) )  =  (mulGrp `  (Poly1 `  R
) )
1817rngmgp 15557 . . . . . 6  |-  ( (Poly1 `  R )  e.  Ring  -> 
(mulGrp `  (Poly1 `  R
) )  e.  Mnd )
1914, 18syl 15 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (mulGrp `  (Poly1 `  R ) )  e.  Mnd )
20 simp3 958 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  NN )
21 eqid 2366 . . . . . . 7  |-  (var1 `  R
)  =  (var1 `  R
)
2221, 1, 2vr1cl 16504 . . . . . 6  |-  ( R  e.  Ring  ->  (var1 `  R
)  e.  ( Base `  (Poly1 `  R ) ) )
2312, 22syl 15 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (var1 `  R )  e.  (
Base `  (Poly1 `  R
) ) )
2417, 2mgpbas 15541 . . . . . 6  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (mulGrp `  (Poly1 `  R ) ) )
25 eqid 2366 . . . . . 6  |-  (.g `  (mulGrp `  (Poly1 `  R ) ) )  =  (.g `  (mulGrp `  (Poly1 `  R ) ) )
2624, 25mulgnncl 14792 . . . . 5  |-  ( ( (mulGrp `  (Poly1 `  R
) )  e.  Mnd  /\  N  e.  NN  /\  (var1 `  R )  e.  (
Base `  (Poly1 `  R
) ) )  -> 
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) ) )
2719, 20, 23, 26syl3anc 1183 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) ) )
28 eqid 2366 . . . . . . 7  |-  (algSc `  (Poly1 `  R ) )  =  (algSc `  (Poly1 `  R
) )
29 idomrootle.b . . . . . . 7  |-  B  =  ( Base `  R
)
301, 28, 29, 2ply1sclf 16571 . . . . . 6  |-  ( R  e.  Ring  ->  (algSc `  (Poly1 `  R ) ) : B --> ( Base `  (Poly1 `  R ) ) )
3112, 30syl 15 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (algSc `  (Poly1 `  R ) ) : B --> ( Base `  (Poly1 `  R ) ) )
32 simp2 957 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  X  e.  B )
33 ffvelrn 5770 . . . . 5  |-  ( ( (algSc `  (Poly1 `  R
) ) : B --> ( Base `  (Poly1 `  R
) )  /\  X  e.  B )  ->  (
(algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) ) )
3431, 32, 33syl2anc 642 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) ) )
35 eqid 2366 . . . . 5  |-  ( -g `  (Poly1 `  R ) )  =  ( -g `  (Poly1 `  R ) )
362, 35grpsubcl 14756 . . . 4  |-  ( ( (Poly1 `  R )  e. 
Grp  /\  ( N
(.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( (algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )
3716, 27, 34, 36syl3anc 1183 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )
383, 1, 2deg1xrcl 19683 . . . . . . . . . 10  |-  ( ( (algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) )  ->  ( ( deg1  `  R
) `  ( (algSc `  (Poly1 `  R ) ) `
 X ) )  e.  RR* )
3934, 38syl 15 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  RR* )
40 0xr 9025 . . . . . . . . . 10  |-  0  e.  RR*
4140a1i 10 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  0  e.  RR* )
42 nnre 9900 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR )
4342rexrd 9028 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR* )
44433ad2ant3 979 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  RR* )
453, 1, 29, 28deg1sclle 19713 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <_  0
)
4612, 32, 45syl2anc 642 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <_  0
)
47 nngt0 9922 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
48473ad2ant3 979 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  0  <  N )
4939, 41, 44, 46, 48xrlelttrd 10643 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <  N
)
508simprbi 450 . . . . . . . . . . 11  |-  ( R  e. IDomn  ->  R  e. Domn )
51 domnnzr 16246 . . . . . . . . . . 11  |-  ( R  e. Domn  ->  R  e. NzRing )
5250, 51syl 15 . . . . . . . . . 10  |-  ( R  e. IDomn  ->  R  e. NzRing )
537, 52syl 15 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e. NzRing )
54 nnnn0 10121 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  NN0 )
55543ad2ant3 979 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  NN0 )
563, 1, 21, 17, 25deg1pw 19721 . . . . . . . . 9  |-  ( ( R  e. NzRing  /\  N  e. 
NN0 )  ->  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) )  =  N )
5753, 55, 56syl2anc 642 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) )  =  N )
5849, 57breqtrrd 4151 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) )
591, 3, 12, 2, 35, 27, 34, 58deg1sub 19709 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  =  ( ( deg1  `  R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) )
6059, 57eqtrd 2398 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  =  N )
6160, 55eqeltrd 2440 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  NN0 )
623, 1, 6, 2deg1nn0clb 19691 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )  -> 
( ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  =/=  ( 0g `  (Poly1 `  R ) )  <-> 
( ( deg1  `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  NN0 )
)
6312, 37, 62syl2anc 642 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) )  =/=  ( 0g `  (Poly1 `  R ) )  <->  ( ( deg1  `  R ) `  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) )  e. 
NN0 ) )
6461, 63mpbird 223 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  =/=  ( 0g `  (Poly1 `  R ) ) )
651, 2, 3, 4, 5, 6, 7, 37, 64fta1g 19768 . 2  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 ( `' ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) " { ( 0g `  R ) } ) )  <_ 
( ( deg1  `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) )
66 eqid 2366 . . . . . . 7  |-  ( R  ^s  B )  =  ( R  ^s  B )
67 eqid 2366 . . . . . . 7  |-  ( Base `  ( R  ^s  B ) )  =  ( Base `  ( R  ^s  B ) )
68 fvex 5646 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
6929, 68eqeltri 2436 . . . . . . . 8  |-  B  e. 
_V
7069a1i 10 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  B  e.  _V )
714, 1, 66, 29evl1rhm 19627 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  (eval1 `  R
)  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
7210, 71syl 15 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
732, 67rhmf 15714 . . . . . . . . 9  |-  ( (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) )  -> 
(eval1 `
 R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  B ) ) )
7472, 73syl 15 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (eval1 `  R ) : (
Base `  (Poly1 `  R
) ) --> ( Base `  ( R  ^s  B ) ) )
75 ffvelrn 5770 . . . . . . . 8  |-  ( ( (eval1 `  R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  B ) )  /\  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) )  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) )  e.  ( Base `  ( R  ^s  B ) ) )
7674, 37, 75syl2anc 642 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  ( Base `  ( R  ^s  B ) ) )
7766, 29, 67, 7, 70, 76pwselbas 13598 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) : B --> B )
78 ffn 5495 . . . . . 6  |-  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) : B --> B  -> 
( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B )
7977, 78syl 15 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B )
80 fniniseg2 5755 . . . . 5  |-  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B  -> 
( `' ( (eval1 `  R ) `  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) } )
8179, 80syl 15 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( `' ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) } )
8210adantr 451 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  R  e.  CRing )
83 simpr 447 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  y  e.  B )
844, 21, 29, 1, 2, 82, 83evl1vard 19631 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
(var1 `  R )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  (var1 `  R
) ) `  y
)  =  y ) )
85 idomrootle.e . . . . . . . . . 10  |-  .^  =  (.g
`  (mulGrp `  R )
)
86 simpl3 961 . . . . . . . . . . 11  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  N  e.  NN )
8786, 54syl 15 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  N  e.  NN0 )
884, 1, 29, 2, 82, 83, 84, 25, 85, 87evl1expd 19636 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  ( N
(.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) `  y )  =  ( N  .^  y ) ) )
89 simpl2 960 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  X  e.  B )
904, 1, 29, 28, 2, 82, 89, 83evl1scad 19629 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( (algSc `  (Poly1 `  R ) ) `  X )  e.  (
Base `  (Poly1 `  R
) )  /\  (
( (eval1 `  R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) ) `  y
)  =  X ) )
91 eqid 2366 . . . . . . . . 9  |-  ( -g `  R )  =  (
-g `  R )
924, 1, 29, 2, 82, 83, 88, 90, 35, 91evl1subd 19633 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( ( N  .^  y
) ( -g `  R
) X ) ) )
9392simprd 449 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( ( N 
.^  y ) (
-g `  R ) X ) )
9493eqeq1d 2374 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( 0g `  R )  <-> 
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R ) ) )
95 rnggrp 15556 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
9612, 95syl 15 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  Grp )
9796adantr 451 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  R  e.  Grp )
98 eqid 2366 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
9998rngmgp 15557 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
10012, 99syl 15 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (mulGrp `  R )  e.  Mnd )
101100adantr 451 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (mulGrp `  R )  e.  Mnd )
10298, 29mgpbas 15541 . . . . . . . . 9  |-  B  =  ( Base `  (mulGrp `  R ) )
103102, 85mulgnncl 14792 . . . . . . . 8  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  N  e.  NN  /\  y  e.  B )  ->  ( N  .^  y )  e.  B )
104101, 86, 83, 103syl3anc 1183 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  ( N  .^  y )  e.  B )
10529, 5, 91grpsubeq0 14762 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( N  .^  y )  e.  B  /\  X  e.  B )  ->  (
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R )  <->  ( N  .^  y )  =  X ) )
10697, 104, 89, 105syl3anc 1183 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R )  <->  ( N  .^  y )  =  X ) )
10794, 106bitrd 244 . . . . 5  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( 0g `  R )  <-> 
( N  .^  y
)  =  X ) )
108107rabbidva 2864 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) }  =  { y  e.  B  |  ( N  .^  y )  =  X } )
10981, 108eqtrd 2398 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( `' ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( N 
.^  y )  =  X } )
110109fveq2d 5636 . 2  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 ( `' ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) " { ( 0g `  R ) } ) )  =  ( # `  {
y  e.  B  | 
( N  .^  y
)  =  X }
) )
11165, 110, 603brtr3d 4154 1  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 { y  e.  B  |  ( N 
.^  y )  =  X } )  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   {crab 2632   _Vcvv 2873   {csn 3729   class class class wbr 4125   `'ccnv 4791   "cima 4795    Fn wfn 5353   -->wf 5354   ` cfv 5358  (class class class)co 5981   0cc0 8884   RR*cxr 9013    < clt 9014    <_ cle 9015   NNcn 9893   NN0cn0 10114   #chash 11505   Basecbs 13356    ^s cpws 13557   0gc0g 13610   Mndcmnd 14571   Grpcgrp 14572   -gcsg 14575  .gcmg 14576  mulGrpcmgp 15535   Ringcrg 15547   CRingccrg 15548   RingHom crh 15704  NzRingcnzr 16219  Domncdomn 16231  IDomncidom 16232  algSccascl 16262  var1cv1 16461  Poly1cpl1 16462  eval1ce1 16464   deg1 cdg1 19655
This theorem is referenced by:  idomodle  27018
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-addf 8963  ax-mulf 8964
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-of 6205  df-ofr 6206  df-1st 6249  df-2nd 6250  df-tpos 6376  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-sup 7341  df-oi 7372  df-card 7719  df-cda 7941  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-fz 10936  df-fzo 11026  df-seq 11211  df-hash 11506  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-plusg 13429  df-mulr 13430  df-starv 13431  df-sca 13432  df-vsca 13433  df-tset 13435  df-ple 13436  df-ds 13438  df-unif 13439  df-hom 13440  df-cco 13441  df-prds 13558  df-pws 13560  df-0g 13614  df-gsum 13615  df-mre 13698  df-mrc 13699  df-acs 13701  df-mnd 14577  df-mhm 14625  df-submnd 14626  df-grp 14699  df-minusg 14700  df-sbg 14701  df-mulg 14702  df-subg 14828  df-ghm 14891  df-cntz 15003  df-cmn 15301  df-abl 15302  df-mgp 15536  df-rng 15550  df-cring 15551  df-ur 15552  df-oppr 15615  df-dvdsr 15633  df-unit 15634  df-invr 15664  df-rnghom 15706  df-subrg 15753  df-lmod 15839  df-lss 15900  df-lsp 15939  df-nzr 16220  df-rlreg 16234  df-domn 16235  df-idom 16236  df-assa 16263  df-asp 16264  df-ascl 16265  df-psr 16308  df-mvr 16309  df-mpl 16310  df-evls 16311  df-evl 16312  df-opsr 16316  df-psr1 16467  df-vr1 16468  df-ply1 16469  df-evl1 16471  df-coe1 16472  df-cnfld 16594  df-mdeg 19656  df-deg1 19657  df-mon1 19731  df-uc1p 19732  df-q1p 19733  df-r1p 19734
  Copyright terms: Public domain W3C validator