Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idomrootle Structured version   Unicode version

Theorem idomrootle 27488
Description: No element of an integral domain can have more than  N  N-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
idomrootle.b  |-  B  =  ( Base `  R
)
idomrootle.e  |-  .^  =  (.g
`  (mulGrp `  R )
)
Assertion
Ref Expression
idomrootle  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 { y  e.  B  |  ( N 
.^  y )  =  X } )  <_  N )
Distinct variable groups:    y, B    y, N    y, R    y, X
Allowed substitution hint:    .^ ( y)

Proof of Theorem idomrootle
StepHypRef Expression
1 eqid 2436 . . 3  |-  (Poly1 `  R
)  =  (Poly1 `  R
)
2 eqid 2436 . . 3  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (Poly1 `  R ) )
3 eqid 2436 . . 3  |-  ( deg1  `  R
)  =  ( deg1  `  R
)
4 eqid 2436 . . 3  |-  (eval1 `  R
)  =  (eval1 `  R
)
5 eqid 2436 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
6 eqid 2436 . . 3  |-  ( 0g
`  (Poly1 `  R ) )  =  ( 0g `  (Poly1 `  R ) )
7 simp1 957 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e. IDomn )
8 isidom 16364 . . . . . . . . 9  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
98simplbi 447 . . . . . . . 8  |-  ( R  e. IDomn  ->  R  e.  CRing )
107, 9syl 16 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  CRing )
11 crngrng 15674 . . . . . . 7  |-  ( R  e.  CRing  ->  R  e.  Ring )
1210, 11syl 16 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  Ring )
131ply1rng 16642 . . . . . 6  |-  ( R  e.  Ring  ->  (Poly1 `  R
)  e.  Ring )
1412, 13syl 16 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (Poly1 `  R )  e.  Ring )
15 rnggrp 15669 . . . . 5  |-  ( (Poly1 `  R )  e.  Ring  -> 
(Poly1 `
 R )  e. 
Grp )
1614, 15syl 16 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (Poly1 `  R )  e.  Grp )
17 eqid 2436 . . . . . . 7  |-  (mulGrp `  (Poly1 `  R ) )  =  (mulGrp `  (Poly1 `  R
) )
1817rngmgp 15670 . . . . . 6  |-  ( (Poly1 `  R )  e.  Ring  -> 
(mulGrp `  (Poly1 `  R
) )  e.  Mnd )
1914, 18syl 16 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (mulGrp `  (Poly1 `  R ) )  e.  Mnd )
20 simp3 959 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  NN )
21 eqid 2436 . . . . . . 7  |-  (var1 `  R
)  =  (var1 `  R
)
2221, 1, 2vr1cl 16611 . . . . . 6  |-  ( R  e.  Ring  ->  (var1 `  R
)  e.  ( Base `  (Poly1 `  R ) ) )
2312, 22syl 16 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (var1 `  R )  e.  (
Base `  (Poly1 `  R
) ) )
2417, 2mgpbas 15654 . . . . . 6  |-  ( Base `  (Poly1 `  R ) )  =  ( Base `  (mulGrp `  (Poly1 `  R ) ) )
25 eqid 2436 . . . . . 6  |-  (.g `  (mulGrp `  (Poly1 `  R ) ) )  =  (.g `  (mulGrp `  (Poly1 `  R ) ) )
2624, 25mulgnncl 14905 . . . . 5  |-  ( ( (mulGrp `  (Poly1 `  R
) )  e.  Mnd  /\  N  e.  NN  /\  (var1 `  R )  e.  (
Base `  (Poly1 `  R
) ) )  -> 
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) ) )
2719, 20, 23, 26syl3anc 1184 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) ) )
28 eqid 2436 . . . . . . 7  |-  (algSc `  (Poly1 `  R ) )  =  (algSc `  (Poly1 `  R
) )
29 idomrootle.b . . . . . . 7  |-  B  =  ( Base `  R
)
301, 28, 29, 2ply1sclf 16677 . . . . . 6  |-  ( R  e.  Ring  ->  (algSc `  (Poly1 `  R ) ) : B --> ( Base `  (Poly1 `  R ) ) )
3112, 30syl 16 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (algSc `  (Poly1 `  R ) ) : B --> ( Base `  (Poly1 `  R ) ) )
32 simp2 958 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  X  e.  B )
3331, 32ffvelrnd 5871 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) ) )
34 eqid 2436 . . . . 5  |-  ( -g `  (Poly1 `  R ) )  =  ( -g `  (Poly1 `  R ) )
352, 34grpsubcl 14869 . . . 4  |-  ( ( (Poly1 `  R )  e. 
Grp  /\  ( N
(.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( (algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) ) )  ->  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )
3616, 27, 33, 35syl3anc 1184 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )
373, 1, 2deg1xrcl 20005 . . . . . . . . . 10  |-  ( ( (algSc `  (Poly1 `  R
) ) `  X
)  e.  ( Base `  (Poly1 `  R ) )  ->  ( ( deg1  `  R
) `  ( (algSc `  (Poly1 `  R ) ) `
 X ) )  e.  RR* )
3833, 37syl 16 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  RR* )
39 0xr 9131 . . . . . . . . . 10  |-  0  e.  RR*
4039a1i 11 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  0  e.  RR* )
41 nnre 10007 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR )
4241rexrd 9134 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR* )
43423ad2ant3 980 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  RR* )
443, 1, 29, 28deg1sclle 20035 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <_  0
)
4512, 32, 44syl2anc 643 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <_  0
)
46 nngt0 10029 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
47463ad2ant3 980 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  0  <  N )
4838, 40, 43, 45, 47xrlelttrd 10750 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <  N
)
498simprbi 451 . . . . . . . . . . 11  |-  ( R  e. IDomn  ->  R  e. Domn )
50 domnnzr 16355 . . . . . . . . . . 11  |-  ( R  e. Domn  ->  R  e. NzRing )
5149, 50syl 16 . . . . . . . . . 10  |-  ( R  e. IDomn  ->  R  e. NzRing )
527, 51syl 16 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e. NzRing )
53 nnnn0 10228 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  NN0 )
54533ad2ant3 980 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  N  e.  NN0 )
553, 1, 21, 17, 25deg1pw 20043 . . . . . . . . 9  |-  ( ( R  e. NzRing  /\  N  e. 
NN0 )  ->  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) )  =  N )
5652, 54, 55syl2anc 643 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) )  =  N )
5748, 56breqtrrd 4238 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) )  <  (
( deg1  `
 R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) )
581, 3, 12, 2, 34, 27, 33, 57deg1sub 20031 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  =  ( ( deg1  `  R ) `  ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) )
5958, 56eqtrd 2468 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  =  N )
6059, 54eqeltrd 2510 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( deg1  `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  NN0 )
613, 1, 6, 2deg1nn0clb 20013 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  e.  (
Base `  (Poly1 `  R
) ) )  -> 
( ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  =/=  ( 0g `  (Poly1 `  R ) )  <-> 
( ( deg1  `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  NN0 )
)
6212, 36, 61syl2anc 643 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) )  =/=  ( 0g `  (Poly1 `  R ) )  <->  ( ( deg1  `  R ) `  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) )  e. 
NN0 ) )
6360, 62mpbird 224 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) )  =/=  ( 0g `  (Poly1 `  R ) ) )
641, 2, 3, 4, 5, 6, 7, 36, 63fta1g 20090 . 2  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 ( `' ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) " { ( 0g `  R ) } ) )  <_ 
( ( deg1  `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) )
65 eqid 2436 . . . . . . 7  |-  ( R  ^s  B )  =  ( R  ^s  B )
66 eqid 2436 . . . . . . 7  |-  ( Base `  ( R  ^s  B ) )  =  ( Base `  ( R  ^s  B ) )
67 fvex 5742 . . . . . . . . 9  |-  ( Base `  R )  e.  _V
6829, 67eqeltri 2506 . . . . . . . 8  |-  B  e. 
_V
6968a1i 11 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  B  e.  _V )
704, 1, 65, 29evl1rhm 19949 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  (eval1 `  R
)  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
7110, 70syl 16 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) ) )
722, 66rhmf 15827 . . . . . . . . 9  |-  ( (eval1 `  R )  e.  ( (Poly1 `  R ) RingHom  ( R  ^s  B ) )  -> 
(eval1 `
 R ) : ( Base `  (Poly1 `  R ) ) --> (
Base `  ( R  ^s  B ) ) )
7371, 72syl 16 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (eval1 `  R ) : (
Base `  (Poly1 `  R
) ) --> ( Base `  ( R  ^s  B ) ) )
7473, 36ffvelrnd 5871 . . . . . . 7  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  e.  ( Base `  ( R  ^s  B ) ) )
7565, 29, 66, 7, 69, 74pwselbas 13711 . . . . . 6  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) : B --> B )
76 ffn 5591 . . . . . 6  |-  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) : B --> B  -> 
( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B )
7775, 76syl 16 . . . . 5  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (
(eval1 `
 R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B )
78 fniniseg2 5853 . . . . 5  |-  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) )  Fn  B  -> 
( `' ( (eval1 `  R ) `  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) } )
7977, 78syl 16 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( `' ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) } )
8010adantr 452 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  R  e.  CRing )
81 simpr 448 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  y  e.  B )
824, 21, 29, 1, 2, 80, 81evl1vard 19953 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
(var1 `  R )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  (var1 `  R
) ) `  y
)  =  y ) )
83 idomrootle.e . . . . . . . . . 10  |-  .^  =  (.g
`  (mulGrp `  R )
)
84 simpl3 962 . . . . . . . . . . 11  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  N  e.  NN )
8584, 53syl 16 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  N  e.  NN0 )
864, 1, 29, 2, 80, 81, 82, 25, 83, 85evl1expd 19958 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  ( N
(.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ) `  y )  =  ( N  .^  y ) ) )
87 simpl2 961 . . . . . . . . . 10  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  X  e.  B )
884, 1, 29, 28, 2, 80, 87, 81evl1scad 19951 . . . . . . . . 9  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( (algSc `  (Poly1 `  R ) ) `  X )  e.  (
Base `  (Poly1 `  R
) )  /\  (
( (eval1 `  R ) `  ( (algSc `  (Poly1 `  R
) ) `  X
) ) `  y
)  =  X ) )
89 eqid 2436 . . . . . . . . 9  |-  ( -g `  R )  =  (
-g `  R )
904, 1, 29, 2, 80, 81, 86, 88, 34, 89evl1subd 19955 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) )  e.  ( Base `  (Poly1 `  R ) )  /\  ( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( ( N  .^  y
) ( -g `  R
) X ) ) )
9190simprd 450 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( ( N 
.^  y ) (
-g `  R ) X ) )
9291eqeq1d 2444 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( 0g `  R )  <-> 
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R ) ) )
93 rnggrp 15669 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Grp )
9412, 93syl 16 . . . . . . . 8  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  R  e.  Grp )
9594adantr 452 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  R  e.  Grp )
96 eqid 2436 . . . . . . . . . . 11  |-  (mulGrp `  R )  =  (mulGrp `  R )
9796rngmgp 15670 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
9812, 97syl 16 . . . . . . . . 9  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  (mulGrp `  R )  e.  Mnd )
9998adantr 452 . . . . . . . 8  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (mulGrp `  R )  e.  Mnd )
10096, 29mgpbas 15654 . . . . . . . . 9  |-  B  =  ( Base `  (mulGrp `  R ) )
101100, 83mulgnncl 14905 . . . . . . . 8  |-  ( ( (mulGrp `  R )  e.  Mnd  /\  N  e.  NN  /\  y  e.  B )  ->  ( N  .^  y )  e.  B )
10299, 84, 81, 101syl3anc 1184 . . . . . . 7  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  ( N  .^  y )  e.  B )
10329, 5, 89grpsubeq0 14875 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( N  .^  y )  e.  B  /\  X  e.  B )  ->  (
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R )  <->  ( N  .^  y )  =  X ) )
10495, 102, 87, 103syl3anc 1184 . . . . . 6  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( N  .^  y ) ( -g `  R ) X )  =  ( 0g `  R )  <->  ( N  .^  y )  =  X ) )
10592, 104bitrd 245 . . . . 5  |-  ( ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  /\  y  e.  B )  ->  (
( ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) `  y )  =  ( 0g `  R )  <-> 
( N  .^  y
)  =  X ) )
106105rabbidva 2947 . . . 4  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  { y  e.  B  |  ( ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) `  y )  =  ( 0g `  R ) }  =  { y  e.  B  |  ( N  .^  y )  =  X } )
10779, 106eqtrd 2468 . . 3  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( `' ( (eval1 `  R
) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R ) ) ) (var1 `  R ) ) ( -g `  (Poly1 `  R ) ) ( (algSc `  (Poly1 `  R
) ) `  X
) ) ) " { ( 0g `  R ) } )  =  { y  e.  B  |  ( N 
.^  y )  =  X } )
108107fveq2d 5732 . 2  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 ( `' ( (eval1 `  R ) `  ( ( N (.g `  (mulGrp `  (Poly1 `  R
) ) ) (var1 `  R ) ) (
-g `  (Poly1 `  R
) ) ( (algSc `  (Poly1 `  R ) ) `
 X ) ) ) " { ( 0g `  R ) } ) )  =  ( # `  {
y  e.  B  | 
( N  .^  y
)  =  X }
) )
10964, 108, 593brtr3d 4241 1  |-  ( ( R  e. IDomn  /\  X  e.  B  /\  N  e.  NN )  ->  ( # `
 { y  e.  B  |  ( N 
.^  y )  =  X } )  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   {crab 2709   _Vcvv 2956   {csn 3814   class class class wbr 4212   `'ccnv 4877   "cima 4881    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   0cc0 8990   RR*cxr 9119    < clt 9120    <_ cle 9121   NNcn 10000   NN0cn0 10221   #chash 11618   Basecbs 13469    ^s cpws 13670   0gc0g 13723   Mndcmnd 14684   Grpcgrp 14685   -gcsg 14688  .gcmg 14689  mulGrpcmgp 15648   Ringcrg 15660   CRingccrg 15661   RingHom crh 15817  NzRingcnzr 16328  Domncdomn 16340  IDomncidom 16341  algSccascl 16371  var1cv1 16570  Poly1cpl1 16571  eval1ce1 16573   deg1 cdg1 19977
This theorem is referenced by:  idomodle  27489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-ofr 6306  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-fz 11044  df-fzo 11136  df-seq 11324  df-hash 11619  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-prds 13671  df-pws 13673  df-0g 13727  df-gsum 13728  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-ghm 15004  df-cntz 15116  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-rnghom 15819  df-subrg 15866  df-lmod 15952  df-lss 16009  df-lsp 16048  df-nzr 16329  df-rlreg 16343  df-domn 16344  df-idom 16345  df-assa 16372  df-asp 16373  df-ascl 16374  df-psr 16417  df-mvr 16418  df-mpl 16419  df-evls 16420  df-evl 16421  df-opsr 16425  df-psr1 16576  df-vr1 16577  df-ply1 16578  df-evl1 16580  df-coe1 16581  df-cnfld 16704  df-mdeg 19978  df-deg1 19979  df-mon1 20053  df-uc1p 20054  df-q1p 20055  df-r1p 20056
  Copyright terms: Public domain W3C validator