MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1 Unicode version

Theorem ifeq1 3510
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq1  |-  ( A  =  B  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  C ) )

Proof of Theorem ifeq1
StepHypRef Expression
1 rabeq 2734 . . 3  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
21uneq1d 3270 . 2  |-  ( A  =  B  ->  ( { x  e.  A  |  ph }  u.  {
x  e.  C  |  -.  ph } )  =  ( { x  e.  B  |  ph }  u.  { x  e.  C  |  -.  ph } ) )
3 dfif6 3509 . 2  |-  if (
ph ,  A ,  C )  =  ( { x  e.  A  |  ph }  u.  {
x  e.  C  |  -.  ph } )
4 dfif6 3509 . 2  |-  if (
ph ,  B ,  C )  =  ( { x  e.  B  |  ph }  u.  {
x  e.  C  |  -.  ph } )
52, 3, 43eqtr4g 2313 1  |-  ( A  =  B  ->  if ( ph ,  A ,  C )  =  if ( ph ,  B ,  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    = wceq 1619   {crab 2519    u. cun 3092   ifcif 3506
This theorem is referenced by:  ifeq12  3519  ifeq1d  3520  ifbieq12i  3527  ifexg  3565  rdgeq2  6358  dfoi  7159  wemaplem2  7195  cantnflem1  7324  sumeq2w  12095  sumeq2ii  12096  mplcoe3  16137  ellimc  19150  ply1nzb  19435  dchrvmasumiflem1  20577  dfrdg2  23486
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-rab 2523  df-v 2742  df-un 3099  df-if 3507
  Copyright terms: Public domain W3C validator