Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifor Structured version   Unicode version

Theorem ifor 3771
 Description: Rewrite a disjunction in an if statement as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifor

Proof of Theorem ifor
StepHypRef Expression
1 iftrue 3737 . . . 4
21orcs 384 . . 3
3 iftrue 3737 . . 3
42, 3eqtr4d 2470 . 2
5 iffalse 3738 . . 3
6 biorf 395 . . . 4
76ifbid 3749 . . 3
85, 7eqtr2d 2468 . 2
94, 8pm2.61i 158 1
 Colors of variables: wff set class Syntax hints:   wn 3   wo 358   wceq 1652  cif 3731 This theorem is referenced by:  cantnflem1d  7636  cantnflem1  7637 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-if 3732
 Copyright terms: Public domain W3C validator