MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpr Structured version   Unicode version

Theorem ifpr 3880
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.)
Assertion
Ref Expression
ifpr  |-  ( ( A  e.  C  /\  B  e.  D )  ->  if ( ph ,  A ,  B )  e.  { A ,  B } )

Proof of Theorem ifpr
StepHypRef Expression
1 elex 2970 . 2  |-  ( A  e.  C  ->  A  e.  _V )
2 elex 2970 . 2  |-  ( B  e.  D  ->  B  e.  _V )
3 ifcl 3799 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  if ( ph ,  A ,  B )  e.  _V )
4 ifeqor 3800 . . . 4  |-  ( if ( ph ,  A ,  B )  =  A  \/  if ( ph ,  A ,  B )  =  B )
5 elprg 3855 . . . 4  |-  ( if ( ph ,  A ,  B )  e.  _V  ->  ( if ( ph ,  A ,  B )  e.  { A ,  B }  <->  ( if (
ph ,  A ,  B )  =  A  \/  if ( ph ,  A ,  B )  =  B ) ) )
64, 5mpbiri 226 . . 3  |-  ( if ( ph ,  A ,  B )  e.  _V  ->  if ( ph ,  A ,  B )  e.  { A ,  B } )
73, 6syl 16 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  if ( ph ,  A ,  B )  e.  { A ,  B } )
81, 2, 7syl2an 465 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  if ( ph ,  A ,  B )  e.  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1727   _Vcvv 2962   ifcif 3763   {cpr 3839
This theorem is referenced by:  suppr  7502  indf  24444  uvcvvcl  27251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-v 2964  df-un 3311  df-if 3764  df-sn 3844  df-pr 3845
  Copyright terms: Public domain W3C validator