Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval Structured version   Unicode version

Theorem igenval 26713
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
igenval.1  |-  G  =  ( 1st `  R
)
igenval.2  |-  X  =  ran  G
Assertion
Ref Expression
igenval  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  ( R  IdlGen  S )  = 
|^| { j  e.  ( Idl `  R )  |  S  C_  j } )
Distinct variable groups:    R, j    S, j    j, X
Allowed substitution hint:    G( j)

Proof of Theorem igenval
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . . . . 6  |-  G  =  ( 1st `  R
)
2 igenval.2 . . . . . 6  |-  X  =  ran  G
31, 2rngoidl 26676 . . . . 5  |-  ( R  e.  RingOps  ->  X  e.  ( Idl `  R ) )
4 sseq2 3359 . . . . . 6  |-  ( j  =  X  ->  ( S  C_  j  <->  S  C_  X
) )
54rspcev 3061 . . . . 5  |-  ( ( X  e.  ( Idl `  R )  /\  S  C_  X )  ->  E. j  e.  ( Idl `  R
) S  C_  j
)
63, 5sylan 459 . . . 4  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  E. j  e.  ( Idl `  R
) S  C_  j
)
7 rabn0 3635 . . . 4  |-  ( { j  e.  ( Idl `  R )  |  S  C_  j }  =/=  (/)  <->  E. j  e.  ( Idl `  R
) S  C_  j
)
86, 7sylibr 205 . . 3  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  { j  e.  ( Idl `  R
)  |  S  C_  j }  =/=  (/) )
9 intex 4391 . . 3  |-  ( { j  e.  ( Idl `  R )  |  S  C_  j }  =/=  (/)  <->  |^| { j  e.  ( Idl `  R
)  |  S  C_  j }  e.  _V )
108, 9sylib 190 . 2  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  |^| { j  e.  ( Idl `  R
)  |  S  C_  j }  e.  _V )
11 fvex 5773 . . . . . . 7  |-  ( 1st `  R )  e.  _V
121, 11eqeltri 2513 . . . . . 6  |-  G  e. 
_V
1312rnex 5168 . . . . 5  |-  ran  G  e.  _V
142, 13eqeltri 2513 . . . 4  |-  X  e. 
_V
1514elpw2 4399 . . 3  |-  ( S  e.  ~P X  <->  S  C_  X
)
16 simpl 445 . . . . . . 7  |-  ( ( r  =  R  /\  s  =  S )  ->  r  =  R )
1716fveq2d 5767 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( Idl `  r
)  =  ( Idl `  R ) )
18 sseq1 3358 . . . . . . 7  |-  ( s  =  S  ->  (
s  C_  j  <->  S  C_  j
) )
1918adantl 454 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( s  C_  j  <->  S 
C_  j ) )
2017, 19rabeqbidv 2960 . . . . 5  |-  ( ( r  =  R  /\  s  =  S )  ->  { j  e.  ( Idl `  r )  |  s  C_  j }  =  { j  e.  ( Idl `  R
)  |  S  C_  j } )
2120inteqd 4084 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  |^| { j  e.  ( Idl `  r
)  |  s  C_  j }  =  |^| { j  e.  ( Idl `  R )  |  S  C_  j } )
22 fveq2 5763 . . . . . . . 8  |-  ( r  =  R  ->  ( 1st `  r )  =  ( 1st `  R
) )
2322, 1syl6eqr 2493 . . . . . . 7  |-  ( r  =  R  ->  ( 1st `  r )  =  G )
2423rneqd 5132 . . . . . 6  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  ran  G )
2524, 2syl6eqr 2493 . . . . 5  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  X )
2625pweqd 3833 . . . 4  |-  ( r  =  R  ->  ~P ran  ( 1st `  r
)  =  ~P X
)
27 df-igen 26712 . . . 4  |-  IdlGen  =  ( r  e.  RingOps ,  s  e.  ~P ran  ( 1st `  r )  |->  |^|
{ j  e.  ( Idl `  r )  |  s  C_  j } )
2821, 26, 27ovmpt2x 6238 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  ~P X  /\  |^| { j  e.  ( Idl `  R )  |  S  C_  j }  e.  _V )  ->  ( R  IdlGen  S )  =  |^| { j  e.  ( Idl `  R
)  |  S  C_  j } )
2915, 28syl3an2br 1225 . 2  |-  ( ( R  e.  RingOps  /\  S  C_  X  /\  |^| { j  e.  ( Idl `  R
)  |  S  C_  j }  e.  _V )  ->  ( R  IdlGen  S )  =  |^| { j  e.  ( Idl `  R
)  |  S  C_  j } )
3010, 29mpd3an3 1281 1  |-  ( ( R  e.  RingOps  /\  S  C_  X )  ->  ( R  IdlGen  S )  = 
|^| { j  e.  ( Idl `  R )  |  S  C_  j } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1654    e. wcel 1728    =/= wne 2606   E.wrex 2713   {crab 2716   _Vcvv 2965    C_ wss 3309   (/)c0 3616   ~Pcpw 3828   |^|cint 4079   ran crn 4914   ` cfv 5489  (class class class)co 6117   1stc1st 6383   RingOpscrngo 22001   Idlcidl 26659    IdlGen cigen 26711
This theorem is referenced by:  igenss  26714  igenidl  26715  igenmin  26716  igenidl2  26717  igenval2  26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-int 4080  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-fo 5495  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-riota 6585  df-grpo 21817  df-gid 21818  df-ablo 21908  df-rngo 22002  df-idl 26662  df-igen 26712
  Copyright terms: Public domain W3C validator