MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iincld Structured version   Unicode version

Theorem iincld 17095
Description: The indexed intersection of a collection  B ( x ) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iincld  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  e.  ( Clsd `  J )
)
Distinct variable groups:    x, A    x, J
Allowed substitution hint:    B( x)

Proof of Theorem iincld
StepHypRef Expression
1 eqid 2435 . . . . . . . 8  |-  U. J  =  U. J
21cldss 17085 . . . . . . 7  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  U. J
)
3 dfss4 3567 . . . . . . 7  |-  ( B 
C_  U. J  <->  ( U. J  \  ( U. J  \  B ) )  =  B )
42, 3sylib 189 . . . . . 6  |-  ( B  e.  ( Clsd `  J
)  ->  ( U. J  \  ( U. J  \  B ) )  =  B )
54ralimi 2773 . . . . 5  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  B )
6 iineq2 4102 . . . . 5  |-  ( A. x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  B  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  |^|_ x  e.  A  B )
75, 6syl 16 . . . 4  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  = 
|^|_ x  e.  A  B )
87adantl 453 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  = 
|^|_ x  e.  A  B )
9 iindif2 4152 . . . 4  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B
) ) )
109adantr 452 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B
) ) )
118, 10eqtr3d 2469 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B ) ) )
12 r19.2z 3709 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  E. x  e.  A  B  e.  ( Clsd `  J )
)
13 cldrcl 17082 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  J  e.  Top )
1413rexlimivw 2818 . . . 4  |-  ( E. x  e.  A  B  e.  ( Clsd `  J
)  ->  J  e.  Top )
1512, 14syl 16 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  J  e.  Top )
161cldopn 17087 . . . . . 6  |-  ( B  e.  ( Clsd `  J
)  ->  ( U. J  \  B )  e.  J )
1716ralimi 2773 . . . . 5  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( U. J  \  B )  e.  J )
1817adantl 453 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  A. x  e.  A  ( U. J  \  B )  e.  J )
19 iunopn 16963 . . . 4  |-  ( ( J  e.  Top  /\  A. x  e.  A  ( U. J  \  B
)  e.  J )  ->  U_ x  e.  A  ( U. J  \  B
)  e.  J )
2015, 18, 19syl2anc 643 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  ( U. J  \  B )  e.  J )
211opncld 17089 . . 3  |-  ( ( J  e.  Top  /\  U_ x  e.  A  ( U. J  \  B
)  e.  J )  ->  ( U. J  \ 
U_ x  e.  A  ( U. J  \  B
) )  e.  (
Clsd `  J )
)
2215, 20, 21syl2anc 643 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  U_ x  e.  A  ( U. J  \  B ) )  e.  ( Clsd `  J
) )
2311, 22eqeltrd 2509 1  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  e.  ( Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    \ cdif 3309    C_ wss 3312   (/)c0 3620   U.cuni 4007   U_ciun 4085   |^|_ciin 4086   ` cfv 5446   Topctop 16950   Clsdccld 17072
This theorem is referenced by:  intcld  17096  riincld  17100  hauscmplem  17461  ubthlem1  22364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454  df-top 16955  df-cld 17075
  Copyright terms: Public domain W3C validator