MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iincld Unicode version

Theorem iincld 16778
Description: The indexed intersection of a collection  B ( x ) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iincld  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  e.  ( Clsd `  J )
)
Distinct variable groups:    x, A    x, J
Allowed substitution hint:    B( x)

Proof of Theorem iincld
StepHypRef Expression
1 eqid 2285 . . . . . . . 8  |-  U. J  =  U. J
21cldss 16768 . . . . . . 7  |-  ( B  e.  ( Clsd `  J
)  ->  B  C_  U. J
)
3 dfss4 3405 . . . . . . 7  |-  ( B 
C_  U. J  <->  ( U. J  \  ( U. J  \  B ) )  =  B )
42, 3sylib 188 . . . . . 6  |-  ( B  e.  ( Clsd `  J
)  ->  ( U. J  \  ( U. J  \  B ) )  =  B )
54ralimi 2620 . . . . 5  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  B )
6 iineq2 3924 . . . . 5  |-  ( A. x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  B  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  |^|_ x  e.  A  B )
75, 6syl 15 . . . 4  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  = 
|^|_ x  e.  A  B )
87adantl 452 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  = 
|^|_ x  e.  A  B )
9 iindif2 3973 . . . 4  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B
) ) )
109adantr 451 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  ( U. J  \  ( U. J  \  B ) )  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B
) ) )
118, 10eqtr3d 2319 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  =  ( U. J  \  U_ x  e.  A  ( U. J  \  B ) ) )
12 r19.2z 3545 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  E. x  e.  A  B  e.  ( Clsd `  J )
)
13 cldrcl 16765 . . . . 5  |-  ( B  e.  ( Clsd `  J
)  ->  J  e.  Top )
1413rexlimivw 2665 . . . 4  |-  ( E. x  e.  A  B  e.  ( Clsd `  J
)  ->  J  e.  Top )
1512, 14syl 15 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  J  e.  Top )
161cldopn 16770 . . . . . 6  |-  ( B  e.  ( Clsd `  J
)  ->  ( U. J  \  B )  e.  J )
1716ralimi 2620 . . . . 5  |-  ( A. x  e.  A  B  e.  ( Clsd `  J
)  ->  A. x  e.  A  ( U. J  \  B )  e.  J )
1817adantl 452 . . . 4  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  A. x  e.  A  ( U. J  \  B )  e.  J )
19 iunopn 16646 . . . 4  |-  ( ( J  e.  Top  /\  A. x  e.  A  ( U. J  \  B
)  e.  J )  ->  U_ x  e.  A  ( U. J  \  B
)  e.  J )
2015, 18, 19syl2anc 642 . . 3  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  U_ x  e.  A  ( U. J  \  B )  e.  J )
211opncld 16772 . . 3  |-  ( ( J  e.  Top  /\  U_ x  e.  A  ( U. J  \  B
)  e.  J )  ->  ( U. J  \ 
U_ x  e.  A  ( U. J  \  B
) )  e.  (
Clsd `  J )
)
2215, 20, 21syl2anc 642 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  ( U. J  \  U_ x  e.  A  ( U. J  \  B ) )  e.  ( Clsd `  J
) )
2311, 22eqeltrd 2359 1  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  ( Clsd `  J
) )  ->  |^|_ x  e.  A  B  e.  ( Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   E.wrex 2546    \ cdif 3151    C_ wss 3154   (/)c0 3457   U.cuni 3829   U_ciun 3907   |^|_ciin 3908   ` cfv 5257   Topctop 16633   Clsdccld 16755
This theorem is referenced by:  intcld  16779  riincld  16783  hauscmplem  17135  ubthlem1  21451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-iota 5221  df-fun 5259  df-fn 5260  df-fv 5265  df-top 16638  df-cld 16758
  Copyright terms: Public domain W3C validator