MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinin1 Unicode version

Theorem iinin1 3975
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 3958 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
iinin1  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( C  i^i  B )  =  ( |^|_ x  e.  A  C  i^i  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iinin1
StepHypRef Expression
1 iinin2 3974 . 2  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  |^|_ x  e.  A  C ) )
2 incom 3363 . . . 4  |-  ( C  i^i  B )  =  ( B  i^i  C
)
32a1i 10 . . 3  |-  ( x  e.  A  ->  ( C  i^i  B )  =  ( B  i^i  C
) )
43iineq2i 3926 . 2  |-  |^|_ x  e.  A  ( C  i^i  B )  =  |^|_ x  e.  A  ( B  i^i  C )
5 incom 3363 . 2  |-  ( |^|_ x  e.  A  C  i^i  B )  =  ( B  i^i  |^|_ x  e.  A  C )
61, 4, 53eqtr4g 2342 1  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  ( C  i^i  B )  =  ( |^|_ x  e.  A  C  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1625    e. wcel 1686    =/= wne 2448    i^i cin 3153   (/)c0 3457   |^|_ciin 3908
This theorem is referenced by:  firest  13339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-v 2792  df-dif 3157  df-in 3161  df-nul 3458  df-iin 3910
  Copyright terms: Public domain W3C validator