MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imai Unicode version

Theorem imai 5029
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
imai  |-  (  _I  " A )  =  A

Proof of Theorem imai
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima3 5017 . 2  |-  (  _I  " A )  =  {
y  |  E. x
( x  e.  A  /\  <. x ,  y
>.  e.  _I  ) }
2 df-br 4026 . . . . . . . 8  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
3 vex 2793 . . . . . . . . 9  |-  y  e. 
_V
43ideq 4838 . . . . . . . 8  |-  ( x  _I  y  <->  x  =  y )
52, 4bitr3i 242 . . . . . . 7  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
65anbi2i 675 . . . . . 6  |-  ( ( x  e.  A  /\  <.
x ,  y >.  e.  _I  )  <->  ( x  e.  A  /\  x  =  y ) )
7 ancom 437 . . . . . 6  |-  ( ( x  e.  A  /\  x  =  y )  <->  ( x  =  y  /\  x  e.  A )
)
86, 7bitri 240 . . . . 5  |-  ( ( x  e.  A  /\  <.
x ,  y >.  e.  _I  )  <->  ( x  =  y  /\  x  e.  A ) )
98exbii 1571 . . . 4  |-  ( E. x ( x  e.  A  /\  <. x ,  y >.  e.  _I  ) 
<->  E. x ( x  =  y  /\  x  e.  A ) )
10 eleq1 2345 . . . . 5  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
113, 10ceqsexv 2825 . . . 4  |-  ( E. x ( x  =  y  /\  x  e.  A )  <->  y  e.  A )
129, 11bitri 240 . . 3  |-  ( E. x ( x  e.  A  /\  <. x ,  y >.  e.  _I  ) 
<->  y  e.  A )
1312abbii 2397 . 2  |-  { y  |  E. x ( x  e.  A  /\  <.
x ,  y >.  e.  _I  ) }  =  { y  |  y  e.  A }
14 abid2 2402 . 2  |-  { y  |  y  e.  A }  =  A
151, 13, 143eqtri 2309 1  |-  (  _I  " A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1530    = wceq 1625    e. wcel 1686   {cab 2271   <.cop 3645   class class class wbr 4025    _I cid 4306   "cima 4694
This theorem is referenced by:  rnresi  5030  cnvresid  5324  ecidsn  6710  mbfid  18993
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-br 4026  df-opab 4080  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704
  Copyright terms: Public domain W3C validator