MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imainss Unicode version

Theorem imainss 5084
Description: An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
imainss  |-  ( ( R " A )  i^i  B )  C_  ( R " ( A  i^i  ( `' R " B ) ) )

Proof of Theorem imainss
StepHypRef Expression
1 vex 2766 . . . . . . . . . . 11  |-  y  e. 
_V
2 vex 2766 . . . . . . . . . . 11  |-  x  e. 
_V
31, 2brcnv 4852 . . . . . . . . . 10  |-  ( y `' R x  <->  x R
y )
4 19.8a 1758 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  y `' R x )  ->  E. y ( y  e.  B  /\  y `' R x ) )
53, 4sylan2br 464 . . . . . . . . 9  |-  ( ( y  e.  B  /\  x R y )  ->  E. y ( y  e.  B  /\  y `' R x ) )
65ancoms 441 . . . . . . . 8  |-  ( ( x R y  /\  y  e.  B )  ->  E. y ( y  e.  B  /\  y `' R x ) )
76anim2i 555 . . . . . . 7  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) ) )
8 simprl 735 . . . . . . 7  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  x R y )
97, 8jca 520 . . . . . 6  |-  ( ( x  e.  A  /\  ( x R y  /\  y  e.  B
) )  ->  (
( x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
109anassrs 632 . . . . 5  |-  ( ( ( x  e.  A  /\  x R y )  /\  y  e.  B
)  ->  ( (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
11 elin 3333 . . . . . . 7  |-  ( x  e.  ( A  i^i  ( `' R " B ) )  <->  ( x  e.  A  /\  x  e.  ( `' R " B ) ) )
122elima2 5006 . . . . . . . 8  |-  ( x  e.  ( `' R " B )  <->  E. y
( y  e.  B  /\  y `' R x ) )
1312anbi2i 678 . . . . . . 7  |-  ( ( x  e.  A  /\  x  e.  ( `' R " B ) )  <-> 
( x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) ) )
1411, 13bitri 242 . . . . . 6  |-  ( x  e.  ( A  i^i  ( `' R " B ) )  <->  ( x  e.  A  /\  E. y
( y  e.  B  /\  y `' R x ) ) )
1514anbi1i 679 . . . . 5  |-  ( ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y )  <->  ( (
x  e.  A  /\  E. y ( y  e.  B  /\  y `' R x ) )  /\  x R y ) )
1610, 15sylibr 205 . . . 4  |-  ( ( ( x  e.  A  /\  x R y )  /\  y  e.  B
)  ->  ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
1716eximi 1574 . . 3  |-  ( E. x ( ( x  e.  A  /\  x R y )  /\  y  e.  B )  ->  E. x ( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
181elima2 5006 . . . . 5  |-  ( y  e.  ( R " A )  <->  E. x
( x  e.  A  /\  x R y ) )
1918anbi1i 679 . . . 4  |-  ( ( y  e.  ( R
" A )  /\  y  e.  B )  <->  ( E. x ( x  e.  A  /\  x R y )  /\  y  e.  B )
)
20 elin 3333 . . . 4  |-  ( y  e.  ( ( R
" A )  i^i 
B )  <->  ( y  e.  ( R " A
)  /\  y  e.  B ) )
21 19.41v 2035 . . . 4  |-  ( E. x ( ( x  e.  A  /\  x R y )  /\  y  e.  B )  <->  ( E. x ( x  e.  A  /\  x R y )  /\  y  e.  B )
)
2219, 20, 213bitr4i 270 . . 3  |-  ( y  e.  ( ( R
" A )  i^i 
B )  <->  E. x
( ( x  e.  A  /\  x R y )  /\  y  e.  B ) )
231elima2 5006 . . 3  |-  ( y  e.  ( R "
( A  i^i  ( `' R " B ) ) )  <->  E. x
( x  e.  ( A  i^i  ( `' R " B ) )  /\  x R y ) )
2417, 22, 233imtr4i 259 . 2  |-  ( y  e.  ( ( R
" A )  i^i 
B )  ->  y  e.  ( R " ( A  i^i  ( `' R " B ) ) ) )
2524ssriv 3159 1  |-  ( ( R " A )  i^i  B )  C_  ( R " ( A  i^i  ( `' R " B ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1537    e. wcel 1621    i^i cin 3126    C_ wss 3127   class class class wbr 3997   `'ccnv 4660   "cima 4664
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-xp 4675  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682
  Copyright terms: Public domain W3C validator