MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imcj Unicode version

Theorem imcj 11857
Description: Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imcj  |-  ( A  e.  CC  ->  (
Im `  ( * `  A ) )  = 
-u ( Im `  A ) )

Proof of Theorem imcj
StepHypRef Expression
1 recl 11835 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 9040 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 8975 . . . . . 6  |-  _i  e.  CC
4 imcl 11836 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 9040 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 9000 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 645 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negsubd 9342 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  -u (
_i  x.  ( Im `  A ) ) )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
9 mulneg2 9396 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
103, 5, 9sylancr 645 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1110oveq2d 6029 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( ( Re
`  A )  + 
-u ( _i  x.  ( Im `  A ) ) ) )
12 remim 11842 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
138, 11, 123eqtr4rd 2423 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  +  ( _i  x.  -u (
Im `  A )
) ) )
1413fveq2d 5665 . 2  |-  ( A  e.  CC  ->  (
Im `  ( * `  A ) )  =  ( Im `  (
( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) ) ) )
154renegcld 9389 . . 3  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
16 crim 11840 . . 3  |-  ( ( ( Re `  A
)  e.  RR  /\  -u ( Im `  A
)  e.  RR )  ->  ( Im `  ( ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) )  = 
-u ( Im `  A ) )
171, 15, 16syl2anc 643 . 2  |-  ( A  e.  CC  ->  (
Im `  ( (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )  =  -u ( Im `  A ) )
1814, 17eqtrd 2412 1  |-  ( A  e.  CC  ->  (
Im `  ( * `  A ) )  = 
-u ( Im `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   ` cfv 5387  (class class class)co 6013   CCcc 8914   RRcr 8915   _ici 8918    + caddc 8919    x. cmul 8921    - cmin 9216   -ucneg 9217   *ccj 11821   Recre 11822   Imcim 11823
This theorem is referenced by:  cjcj  11865  ipcnval  11868  imcji  11901  imcjd  11930  argimlt0  20368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-po 4437  df-so 4438  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-2 9983  df-cj 11824  df-re 11825  df-im 11826
  Copyright terms: Public domain W3C validator