MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imcld Unicode version

Theorem imcld 11927
Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
recld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
imcld  |-  ( ph  ->  ( Im `  A
)  e.  RR )

Proof of Theorem imcld
StepHypRef Expression
1 recld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 imcl 11843 . 2  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
31, 2syl 16 1  |-  ( ph  ->  ( Im `  A
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717   ` cfv 5394   CCcc 8921   RRcr 8922   Imcim 11830
This theorem is referenced by:  rlimrecl  12301  resincl  12668  sin01bnd  12713  recld2  18716  mbfeqa  19402  mbfss  19405  mbfmulc2re  19407  mbfadd  19420  mbfmulc2  19422  mbflim  19427  mbfmul  19485  iblcn  19557  itgcnval  19558  itgre  19559  itgim  19560  iblneg  19561  itgneg  19562  ibladd  19579  itgadd  19583  iblabs  19587  itgmulc2  19592  aaliou2b  20125  efif1olem3  20313  eff1olem  20317  logimclad  20337  abslogimle  20338  logrnaddcl  20339  lognegb  20351  logcj  20368  efiarg  20369  cosargd  20370  argregt0  20372  argrege0  20373  argimgt0  20374  argimlt0  20375  logimul  20376  abslogle  20380  tanarg  20381  logcnlem2  20401  logcnlem3  20402  logcnlem4  20403  logcnlem5  20404  logcn  20405  dvloglem  20406  logf1o2  20408  efopnlem1  20414  efopnlem2  20415  cxpsqrlem  20460  abscxpbnd  20504  ang180lem2  20519  lawcos  20525  isosctrlem1  20529  isosctrlem2  20530  asinneg  20593  asinsinlem  20598  atanlogaddlem  20620  atanlogsublem  20622  atanlogsub  20623  basellem3  20732  sqsscirc2  24111  ibladdnc  25962  itgaddnc  25965  iblabsnc  25969  iblmulc2nc  25970  itgmulc2nc  25973  bddiblnc  25975  cntotbnd  26196  sigarim  27509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-2 9990  df-cj 11831  df-re 11832  df-im 11833
  Copyright terms: Public domain W3C validator