MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdi Unicode version

Theorem imdi 353
Description: Distributive law for implication. Compare Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
imdi  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )

Proof of Theorem imdi
StepHypRef Expression
1 ax-2 6 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  (
( ph  ->  ps )  ->  ( ph  ->  ch ) ) )
2 pm2.86 96 . 2  |-  ( ( ( ph  ->  ps )  ->  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  ->  ch ) ) )
31, 2impbii 181 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177
This theorem is referenced by:  pm5.41  354  orimdi  821  bnj1174  29226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178
  Copyright terms: Public domain W3C validator