MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistanri Structured version   Unicode version

Theorem imdistanri 673
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.)
Hypothesis
Ref Expression
imdistanri.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
imdistanri  |-  ( ( ps  /\  ph )  ->  ( ch  /\  ph ) )

Proof of Theorem imdistanri
StepHypRef Expression
1 imdistanri.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21com12 29 . 2  |-  ( ps 
->  ( ph  ->  ch ) )
32impac 605 1  |-  ( ( ps  /\  ph )  ->  ( ch  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359
This theorem is referenced by:  tc2  7681  cnextcn  18098  usgrarnedg  21404  tpr2rico  24310  seqpo  26451  isdrngo2  26574  pm10.55  27541  2pm13.193VD  29015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator