MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imneg Unicode version

Theorem imneg 11614
Description: The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imneg  |-  ( A  e.  CC  ->  (
Im `  -u A )  =  -u ( Im `  A ) )

Proof of Theorem imneg
StepHypRef Expression
1 recl 11591 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 8857 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 8792 . . . . . 6  |-  _i  e.  CC
4 imcl 11592 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 8857 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 8817 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 644 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negdid 9166 . . . 4  |-  ( A  e.  CC  ->  -u (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( -u (
Re `  A )  +  -u ( _i  x.  ( Im `  A ) ) ) )
9 replim 11597 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
109negeqd 9042 . . . 4  |-  ( A  e.  CC  ->  -u A  =  -u ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
11 mulneg2 9213 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
123, 5, 11sylancr 644 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1312oveq2d 5836 . . . 4  |-  ( A  e.  CC  ->  ( -u ( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( -u (
Re `  A )  +  -u ( _i  x.  ( Im `  A ) ) ) )
148, 10, 133eqtr4d 2326 . . 3  |-  ( A  e.  CC  ->  -u A  =  ( -u (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )
1514fveq2d 5490 . 2  |-  ( A  e.  CC  ->  (
Im `  -u A )  =  ( Im `  ( -u ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) ) )
161renegcld 9206 . . 3  |-  ( A  e.  CC  ->  -u (
Re `  A )  e.  RR )
174renegcld 9206 . . 3  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
18 crim 11596 . . 3  |-  ( (
-u ( Re `  A )  e.  RR  /\  -u ( Im `  A
)  e.  RR )  ->  ( Im `  ( -u ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) )  = 
-u ( Im `  A ) )
1916, 17, 18syl2anc 642 . 2  |-  ( A  e.  CC  ->  (
Im `  ( -u (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )  =  -u ( Im `  A ) )
2015, 19eqtrd 2316 1  |-  ( A  e.  CC  ->  (
Im `  -u A )  =  -u ( Im `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1685   ` cfv 5221  (class class class)co 5820   CCcc 8731   RRcr 8732   _ici 8735    + caddc 8736    x. cmul 8738   -ucneg 9034   Recre 11578   Imcim 11579
This theorem is referenced by:  imsub  11616  cjneg  11628  imnegi  11662  imnegd  11691  logreclem  20112  asinlem3  20163
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-2 9800  df-cj 11580  df-re 11581  df-im 11582
  Copyright terms: Public domain W3C validator