MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imneg Unicode version

Theorem imneg 11921
Description: The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imneg  |-  ( A  e.  CC  ->  (
Im `  -u A )  =  -u ( Im `  A ) )

Proof of Theorem imneg
StepHypRef Expression
1 recl 11898 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 9098 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 9033 . . . . . 6  |-  _i  e.  CC
4 imcl 11899 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 9098 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 9058 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 645 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negdid 9408 . . . 4  |-  ( A  e.  CC  ->  -u (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( -u (
Re `  A )  +  -u ( _i  x.  ( Im `  A ) ) ) )
9 replim 11904 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
109negeqd 9284 . . . 4  |-  ( A  e.  CC  ->  -u A  =  -u ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
11 mulneg2 9455 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
123, 5, 11sylancr 645 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1312oveq2d 6083 . . . 4  |-  ( A  e.  CC  ->  ( -u ( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( -u (
Re `  A )  +  -u ( _i  x.  ( Im `  A ) ) ) )
148, 10, 133eqtr4d 2472 . . 3  |-  ( A  e.  CC  ->  -u A  =  ( -u (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )
1514fveq2d 5718 . 2  |-  ( A  e.  CC  ->  (
Im `  -u A )  =  ( Im `  ( -u ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) ) )
161renegcld 9448 . . 3  |-  ( A  e.  CC  ->  -u (
Re `  A )  e.  RR )
174renegcld 9448 . . 3  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  RR )
18 crim 11903 . . 3  |-  ( (
-u ( Re `  A )  e.  RR  /\  -u ( Im `  A
)  e.  RR )  ->  ( Im `  ( -u ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) ) )  = 
-u ( Im `  A ) )
1916, 17, 18syl2anc 643 . 2  |-  ( A  e.  CC  ->  (
Im `  ( -u (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) ) )  =  -u ( Im `  A ) )
2015, 19eqtrd 2462 1  |-  ( A  e.  CC  ->  (
Im `  -u A )  =  -u ( Im `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   ` cfv 5440  (class class class)co 6067   CCcc 8972   RRcr 8973   _ici 8976    + caddc 8977    x. cmul 8979   -ucneg 9276   Recre 11885   Imcim 11886
This theorem is referenced by:  imsub  11923  cjneg  11935  imnegi  11969  imnegd  11998  logreclem  20643  asinlem3  20694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-po 4490  df-so 4491  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-riota 6535  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-div 9662  df-2 10042  df-cj 11887  df-re 11888  df-im 11889
  Copyright terms: Public domain W3C validator