MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imor Unicode version

Theorem imor 403
Description: Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
imor  |-  ( (
ph  ->  ps )  <->  ( -.  ph  \/  ps ) )

Proof of Theorem imor
StepHypRef Expression
1 notnot 284 . . 3  |-  ( ph  <->  -. 
-.  ph )
21imbi1i 317 . 2  |-  ( (
ph  ->  ps )  <->  ( -.  -.  ph  ->  ps )
)
3 df-or 361 . 2  |-  ( ( -.  ph  \/  ps ) 
<->  ( -.  -.  ph  ->  ps ) )
42, 3bitr4i 245 1  |-  ( (
ph  ->  ps )  <->  ( -.  ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359
This theorem is referenced by:  imori  404  imorri  405  pm4.62  410  pm4.52  479  pm4.78  567  rb-bijust  1505  rb-imdf  1506  rb-ax1  1508  nf4  1801  r19.30  2686  soxp  6189  modom  7058  dffin7-2  8019  algcvgblem  12741  divgcdodd  12792  chrelat2i  22937  meran1  24257  meran3  24259  clsbldimp  24486  stoweidlem14  27162  hbimpgVD  27948  hlrelat2  28859
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator