![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > imsdval2 | Unicode version |
Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsdval2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
imsdval2.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
imsdval2.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
imsdval2.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
imsdval2.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imsdval2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsdval2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2412 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | imsdval2.6 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | imsdval2.8 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | imsdval 22139 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | imsdval2.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | imsdval2.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 6, 7, 2 | nvmval 22084 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | fveq2d 5699 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 5, 9 | eqtrd 2444 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: imsmetlem 22143 nmcvcn 22152 smcnlem 22154 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2393 ax-rep 4288 ax-sep 4298 ax-nul 4306 ax-pow 4345 ax-pr 4371 ax-un 4668 ax-resscn 9011 ax-1cn 9012 ax-icn 9013 ax-addcl 9014 ax-addrcl 9015 ax-mulcl 9016 ax-mulrcl 9017 ax-mulcom 9018 ax-addass 9019 ax-mulass 9020 ax-distr 9021 ax-i2m1 9022 ax-1ne0 9023 ax-1rid 9024 ax-rnegex 9025 ax-rrecex 9026 ax-cnre 9027 ax-pre-lttri 9028 ax-pre-lttrn 9029 ax-pre-ltadd 9030 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3or 937 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2266 df-mo 2267 df-clab 2399 df-cleq 2405 df-clel 2408 df-nfc 2537 df-ne 2577 df-nel 2578 df-ral 2679 df-rex 2680 df-reu 2681 df-rab 2683 df-v 2926 df-sbc 3130 df-csb 3220 df-dif 3291 df-un 3293 df-in 3295 df-ss 3302 df-nul 3597 df-if 3708 df-pw 3769 df-sn 3788 df-pr 3789 df-op 3791 df-uni 3984 df-iun 4063 df-br 4181 df-opab 4235 df-mpt 4236 df-id 4466 df-po 4471 df-so 4472 df-xp 4851 df-rel 4852 df-cnv 4853 df-co 4854 df-dm 4855 df-rn 4856 df-res 4857 df-ima 4858 df-iota 5385 df-fun 5423 df-fn 5424 df-f 5425 df-f1 5426 df-fo 5427 df-f1o 5428 df-fv 5429 df-ov 6051 df-oprab 6052 df-mpt2 6053 df-1st 6316 df-2nd 6317 df-riota 6516 df-er 6872 df-en 7077 df-dom 7078 df-sdom 7079 df-pnf 9086 df-mnf 9087 df-ltxr 9089 df-sub 9257 df-neg 9258 df-grpo 21740 df-gid 21741 df-ginv 21742 df-gdiv 21743 df-ablo 21831 df-vc 21986 df-nv 22032 df-va 22035 df-ba 22036 df-sm 22037 df-0v 22038 df-vs 22039 df-nmcv 22040 df-ims 22041 |
Copyright terms: Public domain | W3C validator |