MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdval2 Unicode version

Theorem imsdval2 21258
Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdval2.1  |-  X  =  ( BaseSet `  U )
imsdval2.2  |-  G  =  ( +v `  U
)
imsdval2.4  |-  S  =  ( .s OLD `  U
)
imsdval2.6  |-  N  =  ( normCV `  U )
imsdval2.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
imsdval2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A G ( -u 1 S B ) ) ) )

Proof of Theorem imsdval2
StepHypRef Expression
1 imsdval2.1 . . 3  |-  X  =  ( BaseSet `  U )
2 eqid 2285 . . 3  |-  ( -v
`  U )  =  ( -v `  U
)
3 imsdval2.6 . . 3  |-  N  =  ( normCV `  U )
4 imsdval2.8 . . 3  |-  D  =  ( IndMet `  U )
51, 2, 3, 4imsdval 21257 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A ( -v `  U ) B ) ) )
6 imsdval2.2 . . . 4  |-  G  =  ( +v `  U
)
7 imsdval2.4 . . . 4  |-  S  =  ( .s OLD `  U
)
81, 6, 7, 2nvmval 21202 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A ( -v `  U ) B )  =  ( A G ( -u 1 S B ) ) )
98fveq2d 5531 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A
( -v `  U
) B ) )  =  ( N `  ( A G ( -u
1 S B ) ) ) )
105, 9eqtrd 2317 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A G ( -u 1 S B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1625    e. wcel 1686   ` cfv 5257  (class class class)co 5860   1c1 8740   -ucneg 9040   NrmCVeccnv 21142   +vcpv 21143   BaseSetcba 21144   .s
OLDcns 21145   -vcnsb 21147   normCVcnmcv 21148   IndMetcims 21149
This theorem is referenced by:  imsmetlem  21261  nmcvcn  21270  smcnlem  21272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-ltxr 8874  df-sub 9041  df-neg 9042  df-grpo 20860  df-gid 20861  df-ginv 20862  df-gdiv 20863  df-ablo 20951  df-vc 21104  df-nv 21150  df-va 21153  df-ba 21154  df-sm 21155  df-0v 21156  df-vs 21157  df-nmcv 21158  df-ims 21159
  Copyright terms: Public domain W3C validator