MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdval2 Structured version   Unicode version

Theorem imsdval2 22171
Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdval2.1  |-  X  =  ( BaseSet `  U )
imsdval2.2  |-  G  =  ( +v `  U
)
imsdval2.4  |-  S  =  ( .s OLD `  U
)
imsdval2.6  |-  N  =  ( normCV `  U )
imsdval2.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
imsdval2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A G ( -u 1 S B ) ) ) )

Proof of Theorem imsdval2
StepHypRef Expression
1 imsdval2.1 . . 3  |-  X  =  ( BaseSet `  U )
2 eqid 2435 . . 3  |-  ( -v
`  U )  =  ( -v `  U
)
3 imsdval2.6 . . 3  |-  N  =  ( normCV `  U )
4 imsdval2.8 . . 3  |-  D  =  ( IndMet `  U )
51, 2, 3, 4imsdval 22170 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A ( -v `  U ) B ) ) )
6 imsdval2.2 . . . 4  |-  G  =  ( +v `  U
)
7 imsdval2.4 . . . 4  |-  S  =  ( .s OLD `  U
)
81, 6, 7, 2nvmval 22115 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A ( -v `  U ) B )  =  ( A G ( -u 1 S B ) ) )
98fveq2d 5724 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A
( -v `  U
) B ) )  =  ( N `  ( A G ( -u
1 S B ) ) ) )
105, 9eqtrd 2467 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( N `  ( A G ( -u 1 S B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   1c1 8983   -ucneg 9284   NrmCVeccnv 22055   +vcpv 22056   BaseSetcba 22057   .s
OLDcns 22058   -vcnsb 22060   normCVcnmcv 22061   IndMetcims 22062
This theorem is referenced by:  imsmetlem  22174  nmcvcn  22183  smcnlem  22185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-ltxr 9117  df-sub 9285  df-neg 9286  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ablo 21862  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-vs 22070  df-nmcv 22071  df-ims 22072
  Copyright terms: Public domain W3C validator