MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsmet Unicode version

Theorem imsmet 21252
Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsmet.1  |-  X  =  ( BaseSet `  U )
imsmet.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
imsmet  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )

Proof of Theorem imsmet
StepHypRef Expression
1 imsmet.8 . 2  |-  D  =  ( IndMet `  U )
2 fveq2 5485 . . . 4  |-  ( U  =  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( IndMet `  U )  =  ( IndMet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
3 imsmet.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
4 fveq2 5485 . . . . . 6  |-  ( U  =  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( BaseSet `  U )  =  ( BaseSet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
53, 4syl5eq 2328 . . . . 5  |-  ( U  =  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  X  =  ( BaseSet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
65fveq2d 5489 . . . 4  |-  ( U  =  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( Met `  X
)  =  ( Met `  ( BaseSet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) ) )
72, 6eleq12d 2352 . . 3  |-  ( U  =  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  ->  ( ( IndMet `  U
)  e.  ( Met `  X )  <->  ( IndMet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  e.  ( Met `  ( BaseSet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) ) ) )
8 eqid 2284 . . . 4  |-  ( BaseSet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )  =  ( BaseSet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) )
9 eqid 2284 . . . 4  |-  ( +v
`  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)  =  ( +v
`  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
10 eqid 2284 . . . 4  |-  ( inv `  ( +v `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )  =  ( inv `  ( +v
`  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
) )
11 eqid 2284 . . . 4  |-  ( .s
OLD `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)  =  ( .s
OLD `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
12 eqid 2284 . . . 4  |-  ( 0vec `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  =  (
0vec `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
13 eqid 2284 . . . 4  |-  ( normCV `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  =  (
normCV
`  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
14 eqid 2284 . . . 4  |-  ( IndMet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  =  (
IndMet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )
)
15 elimnvu 21245 . . . 4  |-  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. )  e.  NrmCVec
168, 9, 10, 11, 12, 13, 14, 15imsmetlem 21251 . . 3  |-  ( IndMet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >.
) )  e.  ( Met `  ( BaseSet `  if ( U  e.  NrmCVec ,  U ,  <. <.  +  ,  x.  >. ,  abs >. ) ) )
177, 16dedth 3607 . 2  |-  ( U  e.  NrmCVec  ->  ( IndMet `  U
)  e.  ( Met `  X ) )
181, 17syl5eqel 2368 1  |-  ( U  e.  NrmCVec  ->  D  e.  ( Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1624    e. wcel 1685   ifcif 3566   <.cop 3644   ` cfv 5221    + caddc 8735    x. cmul 8737   abscabs 11713   Metcme 16364   invcgn 20847   NrmCVeccnv 21132   +vcpv 21133   BaseSetcba 21134   .s
OLDcns 21135   0veccn0v 21136   normCVcnmcv 21138   IndMetcims 21139
This theorem is referenced by:  imsxmet  21253  vacn  21259  nmcvcn  21260  smcnlem  21262  blocni  21375  minvecolem2  21446  minvecolem3  21447  minvecolem4a  21448  minvecolem4  21451  minvecolem7  21454  hhmet  21745  hhssmet  21846
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-map 6769  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-n0 9961  df-z 10020  df-uz 10226  df-rp 10350  df-seq 11041  df-exp 11099  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-met 16368  df-grpo 20850  df-gid 20851  df-ginv 20852  df-gdiv 20853  df-ablo 20941  df-vc 21094  df-nv 21140  df-va 21143  df-ba 21144  df-sm 21145  df-0v 21146  df-vs 21147  df-nmcv 21148  df-ims 21149
  Copyright terms: Public domain W3C validator