MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsval Unicode version

Theorem imsval 21215
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsval.3  |-  M  =  ( -v `  U
)
imsval.6  |-  N  =  ( normCV `  U )
imsval.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
imsval  |-  ( U  e.  NrmCVec  ->  D  =  ( N  o.  M ) )

Proof of Theorem imsval
StepHypRef Expression
1 fveq2 5458 . . . 4  |-  ( u  =  U  ->  ( normCV `  u )  =  (
normCV
`  U ) )
2 fveq2 5458 . . . 4  |-  ( u  =  U  ->  ( -v `  u )  =  ( -v `  U
) )
31, 2coeq12d 4836 . . 3  |-  ( u  =  U  ->  (
( normCV `  u )  o.  ( -v `  u
) )  =  ( ( normCV `  U )  o.  ( -v `  U
) ) )
4 df-ims 21118 . . 3  |-  IndMet  =  ( u  e.  NrmCVec  |->  ( (
normCV
`  u )  o.  ( -v `  u
) ) )
5 fvex 5472 . . . 4  |-  ( normCV `  U )  e.  _V
6 fvex 5472 . . . 4  |-  ( -v
`  U )  e. 
_V
75, 6coex 5203 . . 3  |-  ( (
normCV
`  U )  o.  ( -v `  U
) )  e.  _V
83, 4, 7fvmpt 5536 . 2  |-  ( U  e.  NrmCVec  ->  ( IndMet `  U
)  =  ( (
normCV
`  U )  o.  ( -v `  U
) ) )
9 imsval.8 . 2  |-  D  =  ( IndMet `  U )
10 imsval.6 . . 3  |-  N  =  ( normCV `  U )
11 imsval.3 . . 3  |-  M  =  ( -v `  U
)
1210, 11coeq12i 4835 . 2  |-  ( N  o.  M )  =  ( ( normCV `  U
)  o.  ( -v
`  U ) )
138, 9, 123eqtr4g 2315 1  |-  ( U  e.  NrmCVec  ->  D  =  ( N  o.  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621    o. ccom 4665   ` cfv 4673   NrmCVeccnv 21101   -vcnsb 21106   normCVcnmcv 21107   IndMetcims 21108
This theorem is referenced by:  imsdval  21216  imsdf  21219  cnims  21227  hhims  21712  hhssims  21813
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fv 4689  df-ims 21118
  Copyright terms: Public domain W3C validator