MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imval2 Unicode version

Theorem imval2 11632
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
imval2  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )

Proof of Theorem imval2
StepHypRef Expression
1 imcl 11592 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
21recnd 8857 . . 3  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
3 2cn 9812 . . . . 5  |-  2  e.  CC
4 ax-icn 8792 . . . . 5  |-  _i  e.  CC
53, 4mulcli 8838 . . . 4  |-  ( 2  x.  _i )  e.  CC
6 2ne0 9825 . . . . 5  |-  2  =/=  0
7 ine0 9211 . . . . 5  |-  _i  =/=  0
83, 4, 6, 7mulne0i 9407 . . . 4  |-  ( 2  x.  _i )  =/=  0
9 divcan4 9445 . . . 4  |-  ( ( ( Im `  A
)  e.  CC  /\  ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )  -> 
( ( ( Im
`  A )  x.  ( 2  x.  _i ) )  /  (
2  x.  _i ) )  =  ( Im
`  A ) )
105, 8, 9mp3an23 1269 . . 3  |-  ( ( Im `  A )  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
112, 10syl 15 . 2  |-  ( A  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
12 recl 11591 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1312recnd 8857 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
14 mulcl 8817 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
154, 2, 14sylancr 644 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
1613, 15addcld 8850 . . . . 5  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  e.  CC )
1716, 13, 15subsubd 9181 . . . 4  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  -  (
Re `  A )
)  +  ( _i  x.  ( Im `  A ) ) ) )
18 replim 11597 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
19 remim 11598 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
2018, 19oveq12d 5838 . . . 4  |-  ( A  e.  CC  ->  ( A  -  ( * `  A ) )  =  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )
21152timesd 9950 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
22 mulcom 8819 . . . . . . . 8  |-  ( ( ( Im `  A
)  e.  CC  /\  ( 2  x.  _i )  e.  CC )  ->  ( ( Im `  A )  x.  (
2  x.  _i ) )  =  ( ( 2  x.  _i )  x.  ( Im `  A ) ) )
235, 22mpan2 652 . . . . . . 7  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( ( 2  x.  _i )  x.  ( Im `  A
) ) )
24 mulass 8821 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( 2  x.  _i )  x.  ( Im `  A ) )  =  ( 2  x.  (
_i  x.  ( Im `  A ) ) ) )
253, 4, 24mp3an12 1267 . . . . . . 7  |-  ( ( Im `  A )  e.  CC  ->  (
( 2  x.  _i )  x.  ( Im `  A ) )  =  ( 2  x.  (
_i  x.  ( Im `  A ) ) ) )
2623, 25eqtrd 2316 . . . . . 6  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( 2  x.  ( _i  x.  (
Im `  A )
) ) )
272, 26syl 15 . . . . 5  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( 2  x.  ( _i  x.  (
Im `  A )
) ) )
2813, 15pncan2d 9155 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( Re
`  A ) )  =  ( _i  x.  ( Im `  A ) ) )
2928oveq1d 5835 . . . . 5  |-  ( A  e.  CC  ->  (
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
Re `  A )
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
3021, 27, 293eqtr4d 2326 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  -  ( Re `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
3117, 20, 303eqtr4rd 2327 . . 3  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( A  -  ( * `  A
) ) )
3231oveq1d 5835 . 2  |-  ( A  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )
3311, 32eqtr3d 2318 1  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1685    =/= wne 2447   ` cfv 5221  (class class class)co 5820   CCcc 8731   0cc0 8733   _ici 8735    + caddc 8736    x. cmul 8738    - cmin 9033    / cdiv 9419   2c2 9791   *ccj 11577   Recre 11578   Imcim 11579
This theorem is referenced by:  resinval  12411  dvmptim  19315
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-2 9800  df-cj 11580  df-re 11581  df-im 11582
  Copyright terms: Public domain W3C validator