MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaprc Structured version   Unicode version

Theorem inaprc 8703
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
inaprc  |-  Inacc  e/  _V

Proof of Theorem inaprc
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 8557 . . . . . 6  |-  ( x  e.  Inacc  ->  x  e.  Inacc W )
2 winaon 8555 . . . . . 6  |-  ( x  e.  Inacc W  ->  x  e.  On )
31, 2syl 16 . . . . 5  |-  ( x  e.  Inacc  ->  x  e.  On )
43ssriv 3344 . . . 4  |-  Inacc  C_  On
5 ssorduni 4758 . . . 4  |-  ( Inacc  C_  On  ->  Ord  U. Inacc )
6 ordsson 4762 . . . 4  |-  ( Ord  U. Inacc  ->  U. Inacc  C_  On )
74, 5, 6mp2b 10 . . 3  |-  U. Inacc  C_  On
8 vex 2951 . . . . . . . 8  |-  y  e. 
_V
9 grothtsk 8702 . . . . . . . 8  |-  U. Tarski  =  _V
108, 9eleqtrri 2508 . . . . . . 7  |-  y  e. 
U. Tarski
11 eluni2 4011 . . . . . . 7  |-  ( y  e.  U. Tarski  <->  E. w  e.  Tarski  y  e.  w
)
1210, 11mpbi 200 . . . . . 6  |-  E. w  e.  Tarski  y  e.  w
13 ne0i 3626 . . . . . . . . . 10  |-  ( y  e.  w  ->  w  =/=  (/) )
14 tskcard 8648 . . . . . . . . . 10  |-  ( ( w  e.  Tarski  /\  w  =/=  (/) )  ->  ( card `  w )  e. 
Inacc )
1513, 14sylan2 461 . . . . . . . . 9  |-  ( ( w  e.  Tarski  /\  y  e.  w )  ->  ( card `  w )  e. 
Inacc )
1615adantl 453 . . . . . . . 8  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  -> 
( card `  w )  e.  Inacc )
17 tsksdom 8623 . . . . . . . . . 10  |-  ( ( w  e.  Tarski  /\  y  e.  w )  ->  y  ~<  w )
1817adantl 453 . . . . . . . . 9  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  -> 
y  ~<  w )
19 tskwe2 8640 . . . . . . . . . . 11  |-  ( w  e.  Tarski  ->  w  e.  dom  card )
2019adantr 452 . . . . . . . . . 10  |-  ( ( w  e.  Tarski  /\  y  e.  w )  ->  w  e.  dom  card )
21 cardsdomel 7853 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  w  e.  dom  card )  ->  ( y  ~<  w  <->  y  e.  ( card `  w
) ) )
2220, 21sylan2 461 . . . . . . . . 9  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  -> 
( y  ~<  w  <->  y  e.  ( card `  w
) ) )
2318, 22mpbid 202 . . . . . . . 8  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  -> 
y  e.  ( card `  w ) )
24 eleq2 2496 . . . . . . . . 9  |-  ( z  =  ( card `  w
)  ->  ( y  e.  z  <->  y  e.  (
card `  w )
) )
2524rspcev 3044 . . . . . . . 8  |-  ( ( ( card `  w
)  e.  Inacc  /\  y  e.  ( card `  w
) )  ->  E. z  e.  Inacc  y  e.  z )
2616, 23, 25syl2anc 643 . . . . . . 7  |-  ( ( y  e.  On  /\  ( w  e.  Tarski  /\  y  e.  w ) )  ->  E. z  e.  Inacc  y  e.  z )
2726rexlimdvaa 2823 . . . . . 6  |-  ( y  e.  On  ->  ( E. w  e.  Tarski  y  e.  w  ->  E. z  e.  Inacc  y  e.  z ) )
2812, 27mpi 17 . . . . 5  |-  ( y  e.  On  ->  E. z  e.  Inacc  y  e.  z )
29 eluni2 4011 . . . . 5  |-  ( y  e.  U. Inacc  <->  E. z  e.  Inacc  y  e.  z )
3028, 29sylibr 204 . . . 4  |-  ( y  e.  On  ->  y  e.  U. Inacc )
3130ssriv 3344 . . 3  |-  On  C_  U.
Inacc
327, 31eqssi 3356 . 2  |-  U. Inacc  =  On
33 ssonprc 4764 . . 3  |-  ( Inacc  C_  On  ->  ( Inacc  e/ 
_V 
<-> 
U. Inacc  =  On ) )
344, 33ax-mp 8 . 2  |-  ( Inacc  e/ 
_V 
<-> 
U. Inacc  =  On )
3532, 34mpbir 201 1  |-  Inacc  e/  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598    e/ wnel 2599   E.wrex 2698   _Vcvv 2948    C_ wss 3312   (/)c0 3620   U.cuni 4007   class class class wbr 4204   Ord word 4572   Oncon0 4573   dom cdm 4870   ` cfv 5446    ~< csdm 7100   cardccrd 7814   Inacc Wcwina 8549   Inacccina 8550   Tarskictsk 8615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-ac2 8335  ax-groth 8690
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-smo 6600  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-har 7518  df-r1 7682  df-card 7818  df-aleph 7819  df-cf 7820  df-acn 7821  df-ac 7989  df-wina 8551  df-ina 8552  df-tsk 8616
  Copyright terms: Public domain W3C validator