Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz2 Unicode version

Theorem incsequz2 26343
Description: An increasing sequence of natural numbers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz2  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) )
Distinct variable groups:    k, F, m, n    A, k, m, n

Proof of Theorem incsequz2
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 incsequz 26342 . 2  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  E. n  e.  NN  ( F `  n )  e.  (
ZZ>= `  A ) )
2 nnssre 9960 . . . . . . . . 9  |-  NN  C_  RR
3 ltso 9112 . . . . . . . . . 10  |-  <  Or  RR
4 sopo 4480 . . . . . . . . . 10  |-  (  < 
Or  RR  ->  <  Po  RR )
53, 4ax-mp 8 . . . . . . . . 9  |-  <  Po  RR
6 poss 4465 . . . . . . . . 9  |-  ( NN  C_  RR  ->  (  <  Po  RR  ->  <  Po  NN ) )
72, 5, 6mp2 9 . . . . . . . 8  |-  <  Po  NN
8 seqpo 26341 . . . . . . . 8  |-  ( (  <  Po  NN  /\  F : NN --> NN )  ->  ( A. m  e.  NN  ( F `  m )  <  ( F `  ( m  +  1 ) )  <->  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1
) ) ( F `
 p )  < 
( F `  q
) ) )
97, 8mpan 652 . . . . . . 7  |-  ( F : NN --> NN  ->  ( A. m  e.  NN  ( F `  m )  <  ( F `  ( m  +  1
) )  <->  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) ) )
109biimpd 199 . . . . . 6  |-  ( F : NN --> NN  ->  ( A. m  e.  NN  ( F `  m )  <  ( F `  ( m  +  1
) )  ->  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) ) )
1110imdistani 672 . . . . 5  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) ) )  ->  ( F : NN --> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1
) ) ( F `
 p )  < 
( F `  q
) ) )
12 uzp1 10475 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  n
)  ->  ( k  =  n  \/  k  e.  ( ZZ>= `  ( n  +  1 ) ) ) )
13 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
1413adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  =  n )  ->  ( F `  k )  =  ( F `  n ) )
15 ffvelrn 5827 . . . . . . . . . . . . . . . 16  |-  ( ( F : NN --> NN  /\  n  e.  NN )  ->  ( F `  n
)  e.  NN )
1615nnzd 10330 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> NN  /\  n  e.  NN )  ->  ( F `  n
)  e.  ZZ )
17 uzid 10456 . . . . . . . . . . . . . . 15  |-  ( ( F `  n )  e.  ZZ  ->  ( F `  n )  e.  ( ZZ>= `  ( F `  n ) ) )
1816, 17syl 16 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> NN  /\  n  e.  NN )  ->  ( F `  n
)  e.  ( ZZ>= `  ( F `  n ) ) )
1918adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  =  n )  ->  ( F `  n )  e.  (
ZZ>= `  ( F `  n ) ) )
2014, 19eqeltrd 2478 . . . . . . . . . . . 12  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  =  n )  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
2120adantllr 700 . . . . . . . . . . 11  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  =  n
)  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
22 oveq1 6047 . . . . . . . . . . . . . . . . 17  |-  ( p  =  n  ->  (
p  +  1 )  =  ( n  + 
1 ) )
2322fveq2d 5691 . . . . . . . . . . . . . . . 16  |-  ( p  =  n  ->  ( ZZ>=
`  ( p  + 
1 ) )  =  ( ZZ>= `  ( n  +  1 ) ) )
24 fveq2 5687 . . . . . . . . . . . . . . . . 17  |-  ( p  =  n  ->  ( F `  p )  =  ( F `  n ) )
2524breq1d 4182 . . . . . . . . . . . . . . . 16  |-  ( p  =  n  ->  (
( F `  p
)  <  ( F `  q )  <->  ( F `  n )  <  ( F `  q )
) )
2623, 25raleqbidv 2876 . . . . . . . . . . . . . . 15  |-  ( p  =  n  ->  ( A. q  e.  ( ZZ>=
`  ( p  + 
1 ) ) ( F `  p )  <  ( F `  q )  <->  A. q  e.  ( ZZ>= `  ( n  +  1 ) ) ( F `  n
)  <  ( F `  q ) ) )
2726rspccva 3011 . . . . . . . . . . . . . 14  |-  ( ( A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1
) ) ( F `
 p )  < 
( F `  q
)  /\  n  e.  NN )  ->  A. q  e.  ( ZZ>= `  ( n  +  1 ) ) ( F `  n
)  <  ( F `  q ) )
28 fveq2 5687 . . . . . . . . . . . . . . . 16  |-  ( q  =  k  ->  ( F `  q )  =  ( F `  k ) )
2928breq2d 4184 . . . . . . . . . . . . . . 15  |-  ( q  =  k  ->  (
( F `  n
)  <  ( F `  q )  <->  ( F `  n )  <  ( F `  k )
) )
3029rspccva 3011 . . . . . . . . . . . . . 14  |-  ( ( A. q  e.  (
ZZ>= `  ( n  + 
1 ) ) ( F `  n )  <  ( F `  q )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( F `  n )  <  ( F `  k )
)
3127, 30sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q )  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( F `  n )  <  ( F `  k )
)
3231adantlll 699 . . . . . . . . . . . 12  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( F `  n )  <  ( F `  k )
)
3316adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  e.  (
ZZ>= `  ( n  + 
1 ) ) )  ->  ( F `  n )  e.  ZZ )
34 peano2nn 9968 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
35 elnnuz 10478 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  +  1 )  e.  NN  <->  ( n  +  1 )  e.  ( ZZ>= `  1 )
)
3634, 35sylib 189 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  ( ZZ>= `  1
) )
37 uztrn 10458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ( ZZ>= `  ( n  +  1
) )  /\  (
n  +  1 )  e.  ( ZZ>= `  1
) )  ->  k  e.  ( ZZ>= `  1 )
)
3837ancoms 440 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  +  1 )  e.  ( ZZ>= ` 
1 )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  ( ZZ>= `  1 )
)
39 elnnuz 10478 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
4038, 39sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  +  1 )  e.  ( ZZ>= ` 
1 )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN )
4136, 40sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN )
42 ffvelrn 5827 . . . . . . . . . . . . . . . . 17  |-  ( ( F : NN --> NN  /\  k  e.  NN )  ->  ( F `  k
)  e.  NN )
4342nnzd 10330 . . . . . . . . . . . . . . . 16  |-  ( ( F : NN --> NN  /\  k  e.  NN )  ->  ( F `  k
)  e.  ZZ )
4441, 43sylan2 461 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> NN  /\  ( n  e.  NN  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) ) )  ->  ( F `  k )  e.  ZZ )
4544anassrs 630 . . . . . . . . . . . . . 14  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  e.  (
ZZ>= `  ( n  + 
1 ) ) )  ->  ( F `  k )  e.  ZZ )
46 zre 10242 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n )  e.  ZZ  ->  ( F `  n )  e.  RR )
47 zre 10242 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ZZ  ->  ( F `  k )  e.  RR )
48 ltle 9119 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  n
)  e.  RR  /\  ( F `  k )  e.  RR )  -> 
( ( F `  n )  <  ( F `  k )  ->  ( F `  n
)  <_  ( F `  k ) ) )
4946, 47, 48syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  n
)  e.  ZZ  /\  ( F `  k )  e.  ZZ )  -> 
( ( F `  n )  <  ( F `  k )  ->  ( F `  n
)  <_  ( F `  k ) ) )
50 eluz 10455 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  n
)  e.  ZZ  /\  ( F `  k )  e.  ZZ )  -> 
( ( F `  k )  e.  (
ZZ>= `  ( F `  n ) )  <->  ( F `  n )  <_  ( F `  k )
) )
5149, 50sylibrd 226 . . . . . . . . . . . . . 14  |-  ( ( ( F `  n
)  e.  ZZ  /\  ( F `  k )  e.  ZZ )  -> 
( ( F `  n )  <  ( F `  k )  ->  ( F `  k
)  e.  ( ZZ>= `  ( F `  n ) ) ) )
5233, 45, 51syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( F : NN --> NN  /\  n  e.  NN )  /\  k  e.  (
ZZ>= `  ( n  + 
1 ) ) )  ->  ( ( F `
 n )  < 
( F `  k
)  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) ) )
5352adantllr 700 . . . . . . . . . . . 12  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( F `
 n )  < 
( F `  k
)  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) ) )
5432, 53mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
5521, 54jaodan 761 . . . . . . . . . 10  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  ( k  =  n  \/  k  e.  (
ZZ>= `  ( n  + 
1 ) ) ) )  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
5612, 55sylan2 461 . . . . . . . . 9  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  ->  ( F `  k )  e.  (
ZZ>= `  ( F `  n ) ) )
57 uztrn 10458 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  ( ZZ>= `  ( F `  n ) )  /\  ( F `
 n )  e.  ( ZZ>= `  A )
)  ->  ( F `  k )  e.  (
ZZ>= `  A ) )
5857ex 424 . . . . . . . . 9  |-  ( ( F `  k )  e.  ( ZZ>= `  ( F `  n )
)  ->  ( ( F `  n )  e.  ( ZZ>= `  A )  ->  ( F `  k
)  e.  ( ZZ>= `  A ) ) )
5956, 58syl 16 . . . . . . . 8  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  n  e.  NN )  /\  k  e.  ( ZZ>=
`  n ) )  ->  ( ( F `
 n )  e.  ( ZZ>= `  A )  ->  ( F `  k
)  e.  ( ZZ>= `  A ) ) )
6059adantllr 700 . . . . . . 7  |-  ( ( ( ( ( F : NN --> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1
) ) ( F `
 p )  < 
( F `  q
) )  /\  A  e.  NN )  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  e.  ( ZZ>= `  A )  ->  ( F `  k
)  e.  ( ZZ>= `  A ) ) )
6160ralrimdva 2756 . . . . . 6  |-  ( ( ( ( F : NN
--> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  A  e.  NN )  /\  n  e.  NN )  ->  ( ( F `
 n )  e.  ( ZZ>= `  A )  ->  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  ( ZZ>= `  A
) ) )
6261ex 424 . . . . 5  |-  ( ( ( F : NN --> NN  /\  A. p  e.  NN  A. q  e.  ( ZZ>= `  ( p  +  1 ) ) ( F `  p
)  <  ( F `  q ) )  /\  A  e.  NN )  ->  ( n  e.  NN  ->  ( ( F `  n )  e.  (
ZZ>= `  A )  ->  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  ( ZZ>= `  A
) ) ) )
6311, 62sylan 458 . . . 4  |-  ( ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  ( m  +  1 ) ) )  /\  A  e.  NN )  ->  (
n  e.  NN  ->  ( ( F `  n
)  e.  ( ZZ>= `  A )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) ) ) )
64633impa 1148 . . 3  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  (
n  e.  NN  ->  ( ( F `  n
)  e.  ( ZZ>= `  A )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) ) ) )
6564reximdvai 2776 . 2  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  ( E. n  e.  NN  ( F `  n )  e.  ( ZZ>= `  A
)  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) ) )
661, 65mpd 15 1  |-  ( ( F : NN --> NN  /\  A. m  e.  NN  ( F `  m )  <  ( F `  (
m  +  1 ) )  /\  A  e.  NN )  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  ( ZZ>= `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    Po wpo 4461    Or wor 4462   -->wf 5409   ` cfv 5413  (class class class)co 6040   RRcr 8945   1c1 8947    + caddc 8949    < clt 9076    <_ cle 9077   NNcn 9956   ZZcz 10238   ZZ>=cuz 10444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445
  Copyright terms: Public domain W3C validator