Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indcomp Unicode version

Theorem indcomp 25000
Description: The indiscrete topology is compact. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
indcomp  |-  { (/) ,  A }  e.  Comp

Proof of Theorem indcomp
StepHypRef Expression
1 indistop 16735 . . 3  |-  { (/) ,  A }  e.  Top
2 prfi 7127 . . 3  |-  { (/) ,  A }  e.  Fin
3 elin 3359 . . 3  |-  ( {
(/) ,  A }  e.  ( Top  i^i  Fin ) 
<->  ( { (/) ,  A }  e.  Top  /\  { (/)
,  A }  e.  Fin ) )
41, 2, 3mpbir2an 886 . 2  |-  { (/) ,  A }  e.  ( Top  i^i  Fin )
5 fincmp 17116 . 2  |-  ( {
(/) ,  A }  e.  ( Top  i^i  Fin )  ->  { (/) ,  A }  e.  Comp )
64, 5ax-mp 8 1  |-  { (/) ,  A }  e.  Comp
Colors of variables: wff set class
Syntax hints:    e. wcel 1685    i^i cin 3152   (/)c0 3456   {cpr 3642   Fincfn 6859   Topctop 16627   Compccmp 17109
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-en 6860  df-fin 6863  df-top 16632  df-topon 16635  df-cmp 17110
  Copyright terms: Public domain W3C validator