Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif2 Unicode version

Theorem indif2 3425
 Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
indif2

Proof of Theorem indif2
StepHypRef Expression
1 inass 3392 . 2
2 invdif 3423 . 2
3 invdif 3423 . . 3
43ineq2i 3380 . 2
51, 2, 43eqtr3ri 2325 1
 Colors of variables: wff set class Syntax hints:   wceq 1632  cvv 2801   cdif 3162   cin 3164 This theorem is referenced by:  indif1  3426  indifcom  3427  marypha1lem  7202  difopn  16787  restcld  16919  difmbl  18916  voliunlem1  18923  probdif  23638  wfi  24278  frind  24314  topbnd  26345 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-in 3172
 Copyright terms: Public domain W3C validator