MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistop Structured version   Unicode version

Theorem indistop 17058
Description: The indiscrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistop  |-  { (/) ,  A }  e.  Top

Proof of Theorem indistop
StepHypRef Expression
1 indislem 17056 . 2  |-  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A }
2 fvex 5734 . . . 4  |-  (  _I 
`  A )  e. 
_V
3 indistopon 17057 . . . 4  |-  ( (  _I  `  A )  e.  _V  ->  { (/) ,  (  _I  `  A
) }  e.  (TopOn `  (  _I  `  A
) ) )
42, 3ax-mp 8 . . 3  |-  { (/) ,  (  _I  `  A
) }  e.  (TopOn `  (  _I  `  A
) )
54topontopi 16988 . 2  |-  { (/) ,  (  _I  `  A
) }  e.  Top
61, 5eqeltrri 2506 1  |-  { (/) ,  A }  e.  Top
Colors of variables: wff set class
Syntax hints:    e. wcel 1725   _Vcvv 2948   (/)c0 3620   {cpr 3807    _I cid 4485   ` cfv 5446   Topctop 16950  TopOnctopon 16951
This theorem is referenced by:  indistpsx  17066  indistps  17067  indistps2  17068  indiscld  17147  indiscon  17473  txindis  17658  indispcon  24913  onpsstopbas  26172
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-top 16955  df-topon 16958
  Copyright terms: Public domain W3C validator