MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistop Unicode version

Theorem indistop 16702
Description: The indiscrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistop  |-  { (/) ,  A }  e.  Top

Proof of Theorem indistop
StepHypRef Expression
1 indislem 16700 . 2  |-  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A }
2 fvex 5472 . . . 4  |-  (  _I 
`  A )  e. 
_V
3 indistopon 16701 . . . 4  |-  ( (  _I  `  A )  e.  _V  ->  { (/) ,  (  _I  `  A
) }  e.  (TopOn `  (  _I  `  A
) ) )
42, 3ax-mp 10 . . 3  |-  { (/) ,  (  _I  `  A
) }  e.  (TopOn `  (  _I  `  A
) )
54topontopi 16632 . 2  |-  { (/) ,  (  _I  `  A
) }  e.  Top
61, 5eqeltrri 2329 1  |-  { (/) ,  A }  e.  Top
Colors of variables: wff set class
Syntax hints:    e. wcel 1621   _Vcvv 2763   (/)c0 3430   {cpr 3615    _I cid 4276   ` cfv 4673   Topctop 16594  TopOnctopon 16595
This theorem is referenced by:  indistpsx  16710  indistps  16711  indistps2  16712  indiscld  16791  indiscon  17107  txindis  17291  indispcon  23138  onpsstopbas  24245  indcomp  24957
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fv 4689  df-top 16599  df-topon 16602
  Copyright terms: Public domain W3C validator