MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistopon Unicode version

Theorem indistopon 16754
Description: The indiscrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistopon  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )

Proof of Theorem indistopon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sspr 3793 . . . . 5  |-  ( x 
C_  { (/) ,  A } 
<->  ( ( x  =  (/)  \/  x  =  { (/)
} )  \/  (
x  =  { A }  \/  x  =  { (/) ,  A }
) ) )
2 unieq 3852 . . . . . . . . 9  |-  ( x  =  (/)  ->  U. x  =  U. (/) )
3 uni0 3870 . . . . . . . . . 10  |-  U. (/)  =  (/)
4 0ex 4166 . . . . . . . . . . 11  |-  (/)  e.  _V
54prid1 3747 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  A }
63, 5eqeltri 2366 . . . . . . . . 9  |-  U. (/)  e.  { (/)
,  A }
72, 6syl6eqel 2384 . . . . . . . 8  |-  ( x  =  (/)  ->  U. x  e.  { (/) ,  A }
)
87a1i 10 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  (/)  ->  U. x  e.  { (/) ,  A }
) )
9 unieq 3852 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  U. x  =  U. { (/)
} )
104unisn 3859 . . . . . . . . . 10  |-  U. { (/)
}  =  (/)
1110, 5eqeltri 2366 . . . . . . . . 9  |-  U. { (/)
}  e.  { (/) ,  A }
129, 11syl6eqel 2384 . . . . . . . 8  |-  ( x  =  { (/) }  ->  U. x  e.  { (/) ,  A } )
1312a1i 10 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { (/) }  ->  U. x  e.  { (/)
,  A } ) )
148, 13jaod 369 . . . . . 6  |-  ( A  e.  V  ->  (
( x  =  (/)  \/  x  =  { (/) } )  ->  U. x  e.  { (/) ,  A }
) )
15 unieq 3852 . . . . . . . . . 10  |-  ( x  =  { A }  ->  U. x  =  U. { A } )
16 unisng 3860 . . . . . . . . . 10  |-  ( A  e.  V  ->  U. { A }  =  A
)
1715, 16sylan9eqr 2350 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  U. x  =  A )
18 prid2g 3746 . . . . . . . . . 10  |-  ( A  e.  V  ->  A  e.  { (/) ,  A }
)
1918adantr 451 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  A  e.  { (/) ,  A }
)
2017, 19eqeltrd 2370 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  U. x  e.  { (/) ,  A }
)
2120ex 423 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { A }  ->  U. x  e.  { (/)
,  A } ) )
22 unieq 3852 . . . . . . . . . 10  |-  ( x  =  { (/) ,  A }  ->  U. x  =  U. { (/) ,  A }
)
23 uniprg 3858 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
244, 23mpan 651 . . . . . . . . . . 11  |-  ( A  e.  V  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
25 uncom 3332 . . . . . . . . . . . 12  |-  ( (/)  u.  A )  =  ( A  u.  (/) )
26 un0 3492 . . . . . . . . . . . 12  |-  ( A  u.  (/) )  =  A
2725, 26eqtri 2316 . . . . . . . . . . 11  |-  ( (/)  u.  A )  =  A
2824, 27syl6eq 2344 . . . . . . . . . 10  |-  ( A  e.  V  ->  U. { (/)
,  A }  =  A )
2922, 28sylan9eqr 2350 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  U. x  =  A )
3018adantr 451 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  A  e.  { (/) ,  A }
)
3129, 30eqeltrd 2370 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  U. x  e.  { (/) ,  A }
)
3231ex 423 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
) )
3321, 32jaod 369 . . . . . 6  |-  ( A  e.  V  ->  (
( x  =  { A }  \/  x  =  { (/) ,  A }
)  ->  U. x  e.  { (/) ,  A }
) )
3414, 33jaod 369 . . . . 5  |-  ( A  e.  V  ->  (
( ( x  =  (/)  \/  x  =  { (/)
} )  \/  (
x  =  { A }  \/  x  =  { (/) ,  A }
) )  ->  U. x  e.  { (/) ,  A }
) )
351, 34syl5bi 208 . . . 4  |-  ( A  e.  V  ->  (
x  C_  { (/) ,  A }  ->  U. x  e.  { (/)
,  A } ) )
3635alrimiv 1621 . . 3  |-  ( A  e.  V  ->  A. x
( x  C_  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
) )
37 vex 2804 . . . . . 6  |-  x  e. 
_V
3837elpr 3671 . . . . 5  |-  ( x  e.  { (/) ,  A } 
<->  ( x  =  (/)  \/  x  =  A ) )
39 vex 2804 . . . . . . . . 9  |-  y  e. 
_V
4039elpr 3671 . . . . . . . 8  |-  ( y  e.  { (/) ,  A } 
<->  ( y  =  (/)  \/  y  =  A ) )
41 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  y  =  (/) )
4241ineq2d 3383 . . . . . . . . . . . . 13  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  =  ( x  i^i  (/) ) )
43 in0 3493 . . . . . . . . . . . . 13  |-  ( x  i^i  (/) )  =  (/)
4442, 43syl6eq 2344 . . . . . . . . . . . 12  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  =  (/) )
4544, 5syl6eqel 2384 . . . . . . . . . . 11  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
4645a1i 10 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  (/)  /\  y  =  (/) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } ) )
47 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
y  =  (/) )
4847ineq2d 3383 . . . . . . . . . . . . 13  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  =  ( x  i^i  (/) ) )
4948, 43syl6eq 2344 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  =  (/) )
5049, 5syl6eqel 2384 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } )
5150a1i 10 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  A  /\  y  =  (/) )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
52 simpl 443 . . . . . . . . . . . . . 14  |-  ( ( x  =  (/)  /\  y  =  A )  ->  x  =  (/) )
5352ineq1d 3382 . . . . . . . . . . . . 13  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  =  ( (/)  i^i  y
) )
54 incom 3374 . . . . . . . . . . . . . 14  |-  ( (/)  i^i  y )  =  ( y  i^i  (/) )
55 in0 3493 . . . . . . . . . . . . . 14  |-  ( y  i^i  (/) )  =  (/)
5654, 55eqtri 2316 . . . . . . . . . . . . 13  |-  ( (/)  i^i  y )  =  (/)
5753, 56syl6eq 2344 . . . . . . . . . . . 12  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  =  (/) )
5857, 5syl6eqel 2384 . . . . . . . . . . 11  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
5958a1i 10 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  (/)  /\  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
60 ineq12 3378 . . . . . . . . . . . . . 14  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x  i^i  y
)  =  ( A  i^i  A ) )
6160adantl 452 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  =  ( A  i^i  A ) )
62 inidm 3391 . . . . . . . . . . . . 13  |-  ( A  i^i  A )  =  A
6361, 62syl6eq 2344 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  =  A )
6418adantr 451 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  A  e.  { (/) ,  A }
)
6563, 64eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
6665ex 423 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  A  /\  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
6746, 51, 59, 66ccased 913 . . . . . . . . 9  |-  ( A  e.  V  ->  (
( ( x  =  (/)  \/  x  =  A )  /\  ( y  =  (/)  \/  y  =  A ) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } ) )
6867expdimp 426 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  -> 
( ( y  =  (/)  \/  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
6940, 68syl5bi 208 . . . . . . 7  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  -> 
( y  e.  { (/)
,  A }  ->  ( x  i^i  y )  e.  { (/) ,  A } ) )
7069ralrimiv 2638 . . . . . 6  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  ->  A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
)
7170ex 423 . . . . 5  |-  ( A  e.  V  ->  (
( x  =  (/)  \/  x  =  A )  ->  A. y  e.  { (/)
,  A }  (
x  i^i  y )  e.  { (/) ,  A }
) )
7238, 71syl5bi 208 . . . 4  |-  ( A  e.  V  ->  (
x  e.  { (/) ,  A }  ->  A. y  e.  { (/) ,  A } 
( x  i^i  y
)  e.  { (/) ,  A } ) )
7372ralrimiv 2638 . . 3  |-  ( A  e.  V  ->  A. x  e.  { (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
)
74 prex 4233 . . . 4  |-  { (/) ,  A }  e.  _V
75 istopg 16657 . . . 4  |-  ( {
(/) ,  A }  e.  _V  ->  ( { (/)
,  A }  e.  Top 
<->  ( A. x ( x  C_  { (/) ,  A }  ->  U. x  e.  { (/)
,  A } )  /\  A. x  e. 
{ (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
) ) )
7674, 75mp1i 11 . . 3  |-  ( A  e.  V  ->  ( { (/) ,  A }  e.  Top  <->  ( A. x
( x  C_  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
)  /\  A. x  e.  { (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
) ) )
7736, 73, 76mpbir2and 888 . 2  |-  ( A  e.  V  ->  { (/) ,  A }  e.  Top )
7828eqcomd 2301 . 2  |-  ( A  e.  V  ->  A  =  U. { (/) ,  A } )
79 istopon 16679 . 2  |-  ( {
(/) ,  A }  e.  (TopOn `  A )  <->  ( { (/) ,  A }  e.  Top  /\  A  = 
U. { (/) ,  A } ) )
8077, 78, 79sylanbrc 645 1  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   {cpr 3654   U.cuni 3843   ` cfv 5271   Topctop 16647  TopOnctopon 16648
This theorem is referenced by:  indistop  16755  indisuni  16756  indistpsx  16763  indistpsALT  16766  indistps2ALT  16767  cnindis  17036  indishmph  17505  indistgp  17799
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-top 16652  df-topon 16655
  Copyright terms: Public domain W3C validator