MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistopon Unicode version

Theorem indistopon 17053
Description: The indiscrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistopon  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )

Proof of Theorem indistopon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sspr 3954 . . . . 5  |-  ( x 
C_  { (/) ,  A } 
<->  ( ( x  =  (/)  \/  x  =  { (/)
} )  \/  (
x  =  { A }  \/  x  =  { (/) ,  A }
) ) )
2 unieq 4016 . . . . . . . . 9  |-  ( x  =  (/)  ->  U. x  =  U. (/) )
3 uni0 4034 . . . . . . . . . 10  |-  U. (/)  =  (/)
4 0ex 4331 . . . . . . . . . . 11  |-  (/)  e.  _V
54prid1 3904 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  A }
63, 5eqeltri 2505 . . . . . . . . 9  |-  U. (/)  e.  { (/)
,  A }
72, 6syl6eqel 2523 . . . . . . . 8  |-  ( x  =  (/)  ->  U. x  e.  { (/) ,  A }
)
87a1i 11 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  (/)  ->  U. x  e.  { (/) ,  A }
) )
9 unieq 4016 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  U. x  =  U. { (/)
} )
104unisn 4023 . . . . . . . . . 10  |-  U. { (/)
}  =  (/)
1110, 5eqeltri 2505 . . . . . . . . 9  |-  U. { (/)
}  e.  { (/) ,  A }
129, 11syl6eqel 2523 . . . . . . . 8  |-  ( x  =  { (/) }  ->  U. x  e.  { (/) ,  A } )
1312a1i 11 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { (/) }  ->  U. x  e.  { (/)
,  A } ) )
148, 13jaod 370 . . . . . 6  |-  ( A  e.  V  ->  (
( x  =  (/)  \/  x  =  { (/) } )  ->  U. x  e.  { (/) ,  A }
) )
15 unieq 4016 . . . . . . . . . 10  |-  ( x  =  { A }  ->  U. x  =  U. { A } )
16 unisng 4024 . . . . . . . . . 10  |-  ( A  e.  V  ->  U. { A }  =  A
)
1715, 16sylan9eqr 2489 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  U. x  =  A )
18 prid2g 3903 . . . . . . . . . 10  |-  ( A  e.  V  ->  A  e.  { (/) ,  A }
)
1918adantr 452 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  A  e.  { (/) ,  A }
)
2017, 19eqeltrd 2509 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  U. x  e.  { (/) ,  A }
)
2120ex 424 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { A }  ->  U. x  e.  { (/)
,  A } ) )
22 unieq 4016 . . . . . . . . . 10  |-  ( x  =  { (/) ,  A }  ->  U. x  =  U. { (/) ,  A }
)
23 uniprg 4022 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
244, 23mpan 652 . . . . . . . . . . 11  |-  ( A  e.  V  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
25 uncom 3483 . . . . . . . . . . . 12  |-  ( (/)  u.  A )  =  ( A  u.  (/) )
26 un0 3644 . . . . . . . . . . . 12  |-  ( A  u.  (/) )  =  A
2725, 26eqtri 2455 . . . . . . . . . . 11  |-  ( (/)  u.  A )  =  A
2824, 27syl6eq 2483 . . . . . . . . . 10  |-  ( A  e.  V  ->  U. { (/)
,  A }  =  A )
2922, 28sylan9eqr 2489 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  U. x  =  A )
3018adantr 452 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  A  e.  { (/) ,  A }
)
3129, 30eqeltrd 2509 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  U. x  e.  { (/) ,  A }
)
3231ex 424 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
) )
3321, 32jaod 370 . . . . . 6  |-  ( A  e.  V  ->  (
( x  =  { A }  \/  x  =  { (/) ,  A }
)  ->  U. x  e.  { (/) ,  A }
) )
3414, 33jaod 370 . . . . 5  |-  ( A  e.  V  ->  (
( ( x  =  (/)  \/  x  =  { (/)
} )  \/  (
x  =  { A }  \/  x  =  { (/) ,  A }
) )  ->  U. x  e.  { (/) ,  A }
) )
351, 34syl5bi 209 . . . 4  |-  ( A  e.  V  ->  (
x  C_  { (/) ,  A }  ->  U. x  e.  { (/)
,  A } ) )
3635alrimiv 1641 . . 3  |-  ( A  e.  V  ->  A. x
( x  C_  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
) )
37 vex 2951 . . . . . 6  |-  x  e. 
_V
3837elpr 3824 . . . . 5  |-  ( x  e.  { (/) ,  A } 
<->  ( x  =  (/)  \/  x  =  A ) )
39 vex 2951 . . . . . . . . 9  |-  y  e. 
_V
4039elpr 3824 . . . . . . . 8  |-  ( y  e.  { (/) ,  A } 
<->  ( y  =  (/)  \/  y  =  A ) )
41 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  y  =  (/) )
4241ineq2d 3534 . . . . . . . . . . . . 13  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  =  ( x  i^i  (/) ) )
43 in0 3645 . . . . . . . . . . . . 13  |-  ( x  i^i  (/) )  =  (/)
4442, 43syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  =  (/) )
4544, 5syl6eqel 2523 . . . . . . . . . . 11  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
4645a1i 11 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  (/)  /\  y  =  (/) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } ) )
47 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
y  =  (/) )
4847ineq2d 3534 . . . . . . . . . . . . 13  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  =  ( x  i^i  (/) ) )
4948, 43syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  =  (/) )
5049, 5syl6eqel 2523 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } )
5150a1i 11 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  A  /\  y  =  (/) )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
52 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( x  =  (/)  /\  y  =  A )  ->  x  =  (/) )
5352ineq1d 3533 . . . . . . . . . . . . 13  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  =  ( (/)  i^i  y
) )
54 incom 3525 . . . . . . . . . . . . . 14  |-  ( (/)  i^i  y )  =  ( y  i^i  (/) )
55 in0 3645 . . . . . . . . . . . . . 14  |-  ( y  i^i  (/) )  =  (/)
5654, 55eqtri 2455 . . . . . . . . . . . . 13  |-  ( (/)  i^i  y )  =  (/)
5753, 56syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  =  (/) )
5857, 5syl6eqel 2523 . . . . . . . . . . 11  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
5958a1i 11 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  (/)  /\  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
60 ineq12 3529 . . . . . . . . . . . . . 14  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x  i^i  y
)  =  ( A  i^i  A ) )
6160adantl 453 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  =  ( A  i^i  A ) )
62 inidm 3542 . . . . . . . . . . . . 13  |-  ( A  i^i  A )  =  A
6361, 62syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  =  A )
6418adantr 452 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  A  e.  { (/) ,  A }
)
6563, 64eqeltrd 2509 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
6665ex 424 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  A  /\  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
6746, 51, 59, 66ccased 914 . . . . . . . . 9  |-  ( A  e.  V  ->  (
( ( x  =  (/)  \/  x  =  A )  /\  ( y  =  (/)  \/  y  =  A ) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } ) )
6867expdimp 427 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  -> 
( ( y  =  (/)  \/  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
6940, 68syl5bi 209 . . . . . . 7  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  -> 
( y  e.  { (/)
,  A }  ->  ( x  i^i  y )  e.  { (/) ,  A } ) )
7069ralrimiv 2780 . . . . . 6  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  ->  A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
)
7170ex 424 . . . . 5  |-  ( A  e.  V  ->  (
( x  =  (/)  \/  x  =  A )  ->  A. y  e.  { (/)
,  A }  (
x  i^i  y )  e.  { (/) ,  A }
) )
7238, 71syl5bi 209 . . . 4  |-  ( A  e.  V  ->  (
x  e.  { (/) ,  A }  ->  A. y  e.  { (/) ,  A } 
( x  i^i  y
)  e.  { (/) ,  A } ) )
7372ralrimiv 2780 . . 3  |-  ( A  e.  V  ->  A. x  e.  { (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
)
74 prex 4398 . . . 4  |-  { (/) ,  A }  e.  _V
75 istopg 16956 . . . 4  |-  ( {
(/) ,  A }  e.  _V  ->  ( { (/)
,  A }  e.  Top 
<->  ( A. x ( x  C_  { (/) ,  A }  ->  U. x  e.  { (/)
,  A } )  /\  A. x  e. 
{ (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
) ) )
7674, 75mp1i 12 . . 3  |-  ( A  e.  V  ->  ( { (/) ,  A }  e.  Top  <->  ( A. x
( x  C_  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
)  /\  A. x  e.  { (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
) ) )
7736, 73, 76mpbir2and 889 . 2  |-  ( A  e.  V  ->  { (/) ,  A }  e.  Top )
7828eqcomd 2440 . 2  |-  ( A  e.  V  ->  A  =  U. { (/) ,  A } )
79 istopon 16978 . 2  |-  ( {
(/) ,  A }  e.  (TopOn `  A )  <->  ( { (/) ,  A }  e.  Top  /\  A  = 
U. { (/) ,  A } ) )
8077, 78, 79sylanbrc 646 1  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   {cpr 3807   U.cuni 4007   ` cfv 5445   Topctop 16946  TopOnctopon 16947
This theorem is referenced by:  indistop  17054  indisuni  17055  indistpsx  17062  indistpsALT  17065  indistps2ALT  17066  cnindis  17344  indishmph  17818  indistgp  18118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-iota 5409  df-fun 5447  df-fv 5453  df-top 16951  df-topon 16954
  Copyright terms: Public domain W3C validator