MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistopon Unicode version

Theorem indistopon 16686
Description: The indiscrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistopon  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )

Proof of Theorem indistopon
StepHypRef Expression
1 sspr 3737 . . . . 5  |-  ( x 
C_  { (/) ,  A } 
<->  ( ( x  =  (/)  \/  x  =  { (/)
} )  \/  (
x  =  { A }  \/  x  =  { (/) ,  A }
) ) )
2 unieq 3796 . . . . . . . . 9  |-  ( x  =  (/)  ->  U. x  =  U. (/) )
3 uni0 3814 . . . . . . . . . 10  |-  U. (/)  =  (/)
4 0ex 4110 . . . . . . . . . . 11  |-  (/)  e.  _V
54prid1 3694 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  A }
63, 5eqeltri 2326 . . . . . . . . 9  |-  U. (/)  e.  { (/)
,  A }
72, 6syl6eqel 2344 . . . . . . . 8  |-  ( x  =  (/)  ->  U. x  e.  { (/) ,  A }
)
87a1i 12 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  (/)  ->  U. x  e.  { (/) ,  A }
) )
9 unieq 3796 . . . . . . . . 9  |-  ( x  =  { (/) }  ->  U. x  =  U. { (/)
} )
104unisn 3803 . . . . . . . . . 10  |-  U. { (/)
}  =  (/)
1110, 5eqeltri 2326 . . . . . . . . 9  |-  U. { (/)
}  e.  { (/) ,  A }
129, 11syl6eqel 2344 . . . . . . . 8  |-  ( x  =  { (/) }  ->  U. x  e.  { (/) ,  A } )
1312a1i 12 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { (/) }  ->  U. x  e.  { (/)
,  A } ) )
148, 13jaod 371 . . . . . 6  |-  ( A  e.  V  ->  (
( x  =  (/)  \/  x  =  { (/) } )  ->  U. x  e.  { (/) ,  A }
) )
15 unieq 3796 . . . . . . . . . 10  |-  ( x  =  { A }  ->  U. x  =  U. { A } )
16 unisng 3804 . . . . . . . . . 10  |-  ( A  e.  V  ->  U. { A }  =  A
)
1715, 16sylan9eqr 2310 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  U. x  =  A )
18 prid2g 3693 . . . . . . . . . 10  |-  ( A  e.  V  ->  A  e.  { (/) ,  A }
)
1918adantr 453 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  A  e.  { (/) ,  A }
)
2017, 19eqeltrd 2330 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  =  { A } )  ->  U. x  e.  { (/) ,  A }
)
2120ex 425 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { A }  ->  U. x  e.  { (/)
,  A } ) )
22 unieq 3796 . . . . . . . . . 10  |-  ( x  =  { (/) ,  A }  ->  U. x  =  U. { (/) ,  A }
)
23 uniprg 3802 . . . . . . . . . . . 12  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
244, 23mpan 654 . . . . . . . . . . 11  |-  ( A  e.  V  ->  U. { (/)
,  A }  =  ( (/)  u.  A ) )
25 uncom 3280 . . . . . . . . . . . 12  |-  ( (/)  u.  A )  =  ( A  u.  (/) )
26 un0 3440 . . . . . . . . . . . 12  |-  ( A  u.  (/) )  =  A
2725, 26eqtri 2276 . . . . . . . . . . 11  |-  ( (/)  u.  A )  =  A
2824, 27syl6eq 2304 . . . . . . . . . 10  |-  ( A  e.  V  ->  U. { (/)
,  A }  =  A )
2922, 28sylan9eqr 2310 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  U. x  =  A )
3018adantr 453 . . . . . . . . 9  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  A  e.  { (/) ,  A }
)
3129, 30eqeltrd 2330 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  =  { (/) ,  A } )  ->  U. x  e.  { (/) ,  A }
)
3231ex 425 . . . . . . 7  |-  ( A  e.  V  ->  (
x  =  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
) )
3321, 32jaod 371 . . . . . 6  |-  ( A  e.  V  ->  (
( x  =  { A }  \/  x  =  { (/) ,  A }
)  ->  U. x  e.  { (/) ,  A }
) )
3414, 33jaod 371 . . . . 5  |-  ( A  e.  V  ->  (
( ( x  =  (/)  \/  x  =  { (/)
} )  \/  (
x  =  { A }  \/  x  =  { (/) ,  A }
) )  ->  U. x  e.  { (/) ,  A }
) )
351, 34syl5bi 210 . . . 4  |-  ( A  e.  V  ->  (
x  C_  { (/) ,  A }  ->  U. x  e.  { (/)
,  A } ) )
3635alrimiv 2013 . . 3  |-  ( A  e.  V  ->  A. x
( x  C_  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
) )
37 vex 2760 . . . . . 6  |-  x  e. 
_V
3837elpr 3618 . . . . 5  |-  ( x  e.  { (/) ,  A } 
<->  ( x  =  (/)  \/  x  =  A ) )
39 vex 2760 . . . . . . . . 9  |-  y  e. 
_V
4039elpr 3618 . . . . . . . 8  |-  ( y  e.  { (/) ,  A } 
<->  ( y  =  (/)  \/  y  =  A ) )
41 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  y  =  (/) )
4241ineq2d 3331 . . . . . . . . . . . . 13  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  =  ( x  i^i  (/) ) )
43 in0 3441 . . . . . . . . . . . . 13  |-  ( x  i^i  (/) )  =  (/)
4442, 43syl6eq 2304 . . . . . . . . . . . 12  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  =  (/) )
4544, 5syl6eqel 2344 . . . . . . . . . . 11  |-  ( ( x  =  (/)  /\  y  =  (/) )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
4645a1i 12 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  (/)  /\  y  =  (/) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } ) )
47 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
y  =  (/) )
4847ineq2d 3331 . . . . . . . . . . . . 13  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  =  ( x  i^i  (/) ) )
4948, 43syl6eq 2304 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  =  (/) )
5049, 5syl6eqel 2344 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  y  =  (/) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } )
5150a1i 12 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  A  /\  y  =  (/) )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
52 simpl 445 . . . . . . . . . . . . . 14  |-  ( ( x  =  (/)  /\  y  =  A )  ->  x  =  (/) )
5352ineq1d 3330 . . . . . . . . . . . . 13  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  =  ( (/)  i^i  y
) )
54 incom 3322 . . . . . . . . . . . . . 14  |-  ( (/)  i^i  y )  =  ( y  i^i  (/) )
55 in0 3441 . . . . . . . . . . . . . 14  |-  ( y  i^i  (/) )  =  (/)
5654, 55eqtri 2276 . . . . . . . . . . . . 13  |-  ( (/)  i^i  y )  =  (/)
5753, 56syl6eq 2304 . . . . . . . . . . . 12  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  =  (/) )
5857, 5syl6eqel 2344 . . . . . . . . . . 11  |-  ( ( x  =  (/)  /\  y  =  A )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
5958a1i 12 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  (/)  /\  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
60 ineq12 3326 . . . . . . . . . . . . . 14  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x  i^i  y
)  =  ( A  i^i  A ) )
6160adantl 454 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  =  ( A  i^i  A ) )
62 inidm 3339 . . . . . . . . . . . . 13  |-  ( A  i^i  A )  =  A
6361, 62syl6eq 2304 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  =  A )
6418adantr 453 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  A  e.  { (/) ,  A }
)
6563, 64eqeltrd 2330 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( x  =  A  /\  y  =  A
) )  ->  (
x  i^i  y )  e.  { (/) ,  A }
)
6665ex 425 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( x  =  A  /\  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
6746, 51, 59, 66ccased 918 . . . . . . . . 9  |-  ( A  e.  V  ->  (
( ( x  =  (/)  \/  x  =  A )  /\  ( y  =  (/)  \/  y  =  A ) )  -> 
( x  i^i  y
)  e.  { (/) ,  A } ) )
6867expdimp 428 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  -> 
( ( y  =  (/)  \/  y  =  A )  ->  ( x  i^i  y )  e.  { (/)
,  A } ) )
6940, 68syl5bi 210 . . . . . . 7  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  -> 
( y  e.  { (/)
,  A }  ->  ( x  i^i  y )  e.  { (/) ,  A } ) )
7069ralrimiv 2598 . . . . . 6  |-  ( ( A  e.  V  /\  ( x  =  (/)  \/  x  =  A ) )  ->  A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
)
7170ex 425 . . . . 5  |-  ( A  e.  V  ->  (
( x  =  (/)  \/  x  =  A )  ->  A. y  e.  { (/)
,  A }  (
x  i^i  y )  e.  { (/) ,  A }
) )
7238, 71syl5bi 210 . . . 4  |-  ( A  e.  V  ->  (
x  e.  { (/) ,  A }  ->  A. y  e.  { (/) ,  A } 
( x  i^i  y
)  e.  { (/) ,  A } ) )
7372ralrimiv 2598 . . 3  |-  ( A  e.  V  ->  A. x  e.  { (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
)
74 prex 4175 . . . 4  |-  { (/) ,  A }  e.  _V
75 istopg 16589 . . . 4  |-  ( {
(/) ,  A }  e.  _V  ->  ( { (/)
,  A }  e.  Top 
<->  ( A. x ( x  C_  { (/) ,  A }  ->  U. x  e.  { (/)
,  A } )  /\  A. x  e. 
{ (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
) ) )
7674, 75mp1i 13 . . 3  |-  ( A  e.  V  ->  ( { (/) ,  A }  e.  Top  <->  ( A. x
( x  C_  { (/) ,  A }  ->  U. x  e.  { (/) ,  A }
)  /\  A. x  e.  { (/) ,  A } A. y  e.  { (/) ,  A }  ( x  i^i  y )  e. 
{ (/) ,  A }
) ) )
7736, 73, 76mpbir2and 893 . 2  |-  ( A  e.  V  ->  { (/) ,  A }  e.  Top )
7828eqcomd 2261 . 2  |-  ( A  e.  V  ->  A  =  U. { (/) ,  A } )
79 istopon 16611 . 2  |-  ( {
(/) ,  A }  e.  (TopOn `  A )  <->  ( { (/) ,  A }  e.  Top  /\  A  = 
U. { (/) ,  A } ) )
8077, 78, 79sylanbrc 648 1  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   A.wral 2516   _Vcvv 2757    u. cun 3111    i^i cin 3112    C_ wss 3113   (/)c0 3416   {csn 3600   {cpr 3601   U.cuni 3787   ` cfv 4659   Topctop 16579  TopOnctopon 16580
This theorem is referenced by:  indistop  16687  indisuni  16688  indistpsx  16695  indistpsALT  16698  indistps2ALT  16699  cnindis  16968  indishmph  17437  indistgp  17731
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fv 4675  df-top 16584  df-topon 16587
  Copyright terms: Public domain W3C validator