Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indval2 Unicode version

Theorem indval2 24201
Description: Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017.)
Assertion
Ref Expression
indval2  |-  ( ( O  e.  V  /\  A  C_  O )  -> 
( (𝟭 `  O ) `  A )  =  ( ( A  X.  {
1 } )  u.  ( ( O  \  A )  X.  {
0 } ) ) )

Proof of Theorem indval2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfmpt3 5500 . . . 4  |-  ( x  e.  O  |->  if ( x  e.  A , 
1 ,  0 ) )  =  U_ x  e.  O  ( {
x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )
2 indval 24200 . . . 4  |-  ( ( O  e.  V  /\  A  C_  O )  -> 
( (𝟭 `  O ) `  A )  =  ( x  e.  O  |->  if ( x  e.  A ,  1 ,  0 ) ) )
3 undif 3644 . . . . . . 7  |-  ( A 
C_  O  <->  ( A  u.  ( O  \  A
) )  =  O )
43biimpi 187 . . . . . 6  |-  ( A 
C_  O  ->  ( A  u.  ( O  \  A ) )  =  O )
54adantl 453 . . . . 5  |-  ( ( O  e.  V  /\  A  C_  O )  -> 
( A  u.  ( O  \  A ) )  =  O )
65iuneq1d 4051 . . . 4  |-  ( ( O  e.  V  /\  A  C_  O )  ->  U_ x  e.  ( A  u.  ( O  \  A ) ) ( { x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  =  U_ x  e.  O  ( { x }  X.  { if ( x  e.  A , 
1 ,  0 ) } ) )
71, 2, 63eqtr4a 2438 . . 3  |-  ( ( O  e.  V  /\  A  C_  O )  -> 
( (𝟭 `  O ) `  A )  =  U_ x  e.  ( A  u.  ( O  \  A
) ) ( { x }  X.  { if ( x  e.  A ,  1 ,  0 ) } ) )
8 iunxun 4106 . . 3  |-  U_ x  e.  ( A  u.  ( O  \  A ) ) ( { x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  =  ( U_ x  e.  A  ( { x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  u.  U_ x  e.  ( O  \  A
) ( { x }  X.  { if ( x  e.  A , 
1 ,  0 ) } ) )
97, 8syl6eq 2428 . 2  |-  ( ( O  e.  V  /\  A  C_  O )  -> 
( (𝟭 `  O ) `  A )  =  (
U_ x  e.  A  ( { x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  u.  U_ x  e.  ( O  \  A
) ( { x }  X.  { if ( x  e.  A , 
1 ,  0 ) } ) ) )
10 iftrue 3681 . . . . . . 7  |-  ( x  e.  A  ->  if ( x  e.  A ,  1 ,  0 )  =  1 )
1110sneqd 3763 . . . . . 6  |-  ( x  e.  A  ->  { if ( x  e.  A ,  1 ,  0 ) }  =  {
1 } )
1211xpeq2d 4835 . . . . 5  |-  ( x  e.  A  ->  ( { x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  =  ( { x }  X.  { 1 } ) )
1312iuneq2i 4046 . . . 4  |-  U_ x  e.  A  ( {
x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  = 
U_ x  e.  A  ( { x }  X.  { 1 } )
14 iunxpconst 4867 . . . 4  |-  U_ x  e.  A  ( {
x }  X.  {
1 } )  =  ( A  X.  {
1 } )
1513, 14eqtri 2400 . . 3  |-  U_ x  e.  A  ( {
x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  =  ( A  X.  {
1 } )
16 eldifn 3406 . . . . . . 7  |-  ( x  e.  ( O  \  A )  ->  -.  x  e.  A )
17 iffalse 3682 . . . . . . . 8  |-  ( -.  x  e.  A  ->  if ( x  e.  A ,  1 ,  0 )  =  0 )
1817sneqd 3763 . . . . . . 7  |-  ( -.  x  e.  A  ->  { if ( x  e.  A ,  1 ,  0 ) }  =  { 0 } )
1916, 18syl 16 . . . . . 6  |-  ( x  e.  ( O  \  A )  ->  { if ( x  e.  A ,  1 ,  0 ) }  =  {
0 } )
2019xpeq2d 4835 . . . . 5  |-  ( x  e.  ( O  \  A )  ->  ( { x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  =  ( { x }  X.  { 0 } ) )
2120iuneq2i 4046 . . . 4  |-  U_ x  e.  ( O  \  A
) ( { x }  X.  { if ( x  e.  A , 
1 ,  0 ) } )  =  U_ x  e.  ( O  \  A ) ( { x }  X.  {
0 } )
22 iunxpconst 4867 . . . 4  |-  U_ x  e.  ( O  \  A
) ( { x }  X.  { 0 } )  =  ( ( O  \  A )  X.  { 0 } )
2321, 22eqtri 2400 . . 3  |-  U_ x  e.  ( O  \  A
) ( { x }  X.  { if ( x  e.  A , 
1 ,  0 ) } )  =  ( ( O  \  A
)  X.  { 0 } )
2415, 23uneq12i 3435 . 2  |-  ( U_ x  e.  A  ( { x }  X.  { if ( x  e.  A ,  1 ,  0 ) } )  u.  U_ x  e.  ( O  \  A
) ( { x }  X.  { if ( x  e.  A , 
1 ,  0 ) } ) )  =  ( ( A  X.  { 1 } )  u.  ( ( O 
\  A )  X. 
{ 0 } ) )
259, 24syl6eq 2428 1  |-  ( ( O  e.  V  /\  A  C_  O )  -> 
( (𝟭 `  O ) `  A )  =  ( ( A  X.  {
1 } )  u.  ( ( O  \  A )  X.  {
0 } ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    \ cdif 3253    u. cun 3254    C_ wss 3256   ifcif 3675   {csn 3750   U_ciun 4028    e. cmpt 4200    X. cxp 4809   ` cfv 5387   0cc0 8916   1c1 8917  𝟭cind 24197
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ind 24198
  Copyright terms: Public domain W3C validator