MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf1 Unicode version

Theorem inf1 7318
Description: Variation of Axiom of Infinity (using zfinf 7335 as a hypothesis). Axiom of Infinity in [FreydScedrov] p. 283. (Contributed by NM, 14-Oct-1996.) (Revised by David Abernethy, 1-Oct-2013.)
Hypothesis
Ref Expression
inf1.1  |-  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
Assertion
Ref Expression
inf1  |-  E. x
( x  =/=  (/)  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )

Proof of Theorem inf1
StepHypRef Expression
1 inf1.1 . 2  |-  E. x
( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
2 ne0i 3462 . . . 4  |-  ( y  e.  x  ->  x  =/=  (/) )
32anim1i 553 . . 3  |-  ( ( y  e.  x  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )  -> 
( x  =/=  (/)  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) ) )
43eximi 1564 . 2  |-  ( E. x ( y  e.  x  /\  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) )  ->  E. x ( x  =/=  (/)  /\  A. y
( y  e.  x  ->  E. z ( y  e.  z  /\  z  e.  x ) ) ) )
51, 4ax-mp 10 1  |-  E. x
( x  =/=  (/)  /\  A. y ( y  e.  x  ->  E. z
( y  e.  z  /\  z  e.  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wal 1528   E.wex 1529    e. wcel 1685    =/= wne 2447   (/)c0 3456
This theorem is referenced by:  inf2  7319
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-v 2791  df-dif 3156  df-nul 3457
  Copyright terms: Public domain W3C validator