MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3 Unicode version

Theorem inf3 7304
Description: Our Axiom of Infinity ax-inf 7307 implies the standard Axiom of Infinity. The hypothesis is a variant of our Axiom of Infinity provided by inf2 7292, and the conclusion is the version of the Axiom of Infinity shown as Axiom 7 in [TakeutiZaring] p. 43. (Other standard versions are proved later as axinf2 7309 and zfinf2 7311.) The main proof is provided by inf3lema 7293 through inf3lem7 7303, and this final piece eliminates the auxiliary hypothesis of inf3lem7 7303. This proof is due to Ian Sutherland, Richard Heck, and Norman Megill and was posted on Usenet as shown below. Although the result is not new, the authors were unable to find a published proof.
       (As posted to sci.logic on 30-Oct-1996, with annotations added.)

       Theorem:  The statement "There exists a non-empty set that is a subset
       of its union" implies the Axiom of Infinity.

       Proof:  Let X be a nonempty set which is a subset of its union; the
       latter
       property is equivalent to saying that for any y in X, there exists a z
       in X
       such that y is in z.

       Define by finite recursion a function F:omega-->(power X) such that
       F_0 = 0  (See inf3lemb 7294.)
       F_n+1 = {y<X | y^X subset F_n}  (See inf3lemc 7295.)
       Note: ^ means intersect, < means \in ("element of").
       (Finite recursion as typically done requires the existence of omega;
       to avoid this we can just use transfinite recursion restricted to omega.
       F is a class-term that is not necessarily a set at this point.)

       Lemma 1.  F_n subset F_n+1.  (See inf3lem1 7297.)
       Proof:  By induction:  F_0 subset F_1.  If y < F_n+1, then y^X subset
       F_n,
       so if F_n subset F_n+1, then y^X subset F_n+1, so y < F_n+2.

       Lemma 2.  F_n =/= X.  (See inf3lem2 7298.)
       Proof:  By induction:  F_0 =/= X because X is not empty.  Assume F_n =/=
       X.
       Then there is a y in X that is not in F_n.  By definition of X, there is
       a
       z in X that contains y.  Suppose F_n+1 = X.  Then z is in F_n+1, and z^X
       contains y, so z^X is not a subset of F_n, contrary to the definition of
       F_n+1.

       Lemma 3.  F_n =/= F_n+1.  (See inf3lem3 7299.)
       Proof:  Using the identity y^X subset F_n <-> y^(X-F_n) = 0, we have
       F_n+1 = {y<X | y^(X-F_n) = 0}.  Let q = {y<X-F_n | y^(X-F_n) = 0}.
       Then q subset F_n+1.  Since X-F_n is not empty by Lemma 2 and q is the
       set of \in-minimal elements of X-F_n, by Foundation q is not empty, so q
       and therefore F_n+1 have an element not in F_n.

       Lemma 4.  F_n proper_subset F_n+1.  (See inf3lem4 7300.)
       Proof:  Lemmas 1 and 3.

       Lemma 5.  F_m proper_subset F_n, m < n.  (See inf3lem5 7301.)
       Proof:  Fix m and use induction on n > m.  Basis: F_m proper_subset
       F_m+1
       by Lemma 4.  Induction:  Assume F_m proper_subset F_n.  Then since F_n
       proper_subset F_n+1, F_m proper_subset F_n+1 by transitivity of proper
       subset.

       By Lemma 5, F_m =/= F_n for m =/= n, so F is 1-1.  (See inf3lem6 7302.)
       Thus the inverse of F is a function with range omega and domain a subset
       of power X, so omega exists by Replacement.  (See inf3lem7 7303.)
       Q.E.D.
       
(Contributed by NM, 29-Oct-1996.)
Hypothesis
Ref Expression
inf3.1  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
Assertion
Ref Expression
inf3  |-  om  e.  _V

Proof of Theorem inf3
StepHypRef Expression
1 inf3.1 . 2  |-  E. x
( x  =/=  (/)  /\  x  C_ 
U. x )
2 eqid 2258 . . . 4  |-  ( y  e.  _V  |->  { w  e.  x  |  (
w  i^i  x )  C_  y } )  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
3 eqid 2258 . . . 4  |-  ( rec ( ( y  e. 
_V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } ) ,  (/) )  |`  om )  =  ( rec ( ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x
)  C_  y }
) ,  (/) )  |`  om )
4 vex 2766 . . . 4  |-  x  e. 
_V
52, 3, 4, 4inf3lem7 7303 . . 3  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  ->  om  e.  _V )
65exlimiv 2024 . 2  |-  ( E. x ( x  =/=  (/)  /\  x  C_  U. x
)  ->  om  e.  _V )
71, 6ax-mp 10 1  |-  om  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1537    e. wcel 1621    =/= wne 2421   {crab 2522   _Vcvv 2763    i^i cin 3126    C_ wss 3127   (/)c0 3430   U.cuni 3801    e. cmpt 4051   omcom 4628    |` cres 4663   reccrdg 6390
This theorem is referenced by:  axinf2  7309
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-reg 7274
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-recs 6356  df-rdg 6391
  Copyright terms: Public domain W3C validator