MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf5 Unicode version

Theorem inf5 7342
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see theorem infeq5 7334). This provides us with a very compact way to express of the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.)
Assertion
Ref Expression
inf5  |-  E. x  x  C.  U. x

Proof of Theorem inf5
StepHypRef Expression
1 omex 7340 . 2  |-  om  e.  _V
2 infeq5i 7333 . 2  |-  ( om  e.  _V  ->  E. x  x  C.  U. x )
31, 2ax-mp 8 1  |-  E. x  x  C.  U. x
Colors of variables: wff set class
Syntax hints:   E.wex 1528    e. wcel 1685   _Vcvv 2789    C. wpss 3154   U.cuni 3828   omcom 4655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511  ax-inf2 7338
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-tr 4115  df-eprel 4304  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656
  Copyright terms: Public domain W3C validator