MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf5 Unicode version

Theorem inf5 7279
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see theorem infeq5 7271). This provides us with a very compact way to express of the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.)
Assertion
Ref Expression
inf5  |-  E. x  x  C.  U. x

Proof of Theorem inf5
StepHypRef Expression
1 omex 7277 . 2  |-  om  e.  _V
2 infeq5i 7270 . 2  |-  ( om  e.  _V  ->  E. x  x  C.  U. x )
31, 2ax-mp 10 1  |-  E. x  x  C.  U. x
Colors of variables: wff set class
Syntax hints:   E.wex 1537    e. wcel 1621   _Vcvv 2740    C. wpss 3095   U.cuni 3768   omcom 4593
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-tr 4054  df-eprel 4242  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594
  Copyright terms: Public domain W3C validator