MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcntss Unicode version

Theorem infcntss 7132
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.)
Hypothesis
Ref Expression
infcntss.1  |-  A  e. 
_V
Assertion
Ref Expression
infcntss  |-  ( om  ~<_  A  ->  E. x
( x  C_  A  /\  x  ~~  om )
)
Distinct variable group:    x, A

Proof of Theorem infcntss
StepHypRef Expression
1 infcntss.1 . . 3  |-  A  e. 
_V
21domen 6877 . 2  |-  ( om  ~<_  A  <->  E. x ( om 
~~  x  /\  x  C_  A ) )
3 ensym 6912 . . . . 5  |-  ( om 
~~  x  ->  x  ~~  om )
43anim2i 552 . . . 4  |-  ( ( x  C_  A  /\  om 
~~  x )  -> 
( x  C_  A  /\  x  ~~  om )
)
54ancoms 439 . . 3  |-  ( ( om  ~~  x  /\  x  C_  A )  -> 
( x  C_  A  /\  x  ~~  om )
)
65eximi 1565 . 2  |-  ( E. x ( om  ~~  x  /\  x  C_  A
)  ->  E. x
( x  C_  A  /\  x  ~~  om )
)
72, 6sylbi 187 1  |-  ( om  ~<_  A  ->  E. x
( x  C_  A  /\  x  ~~  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1530    e. wcel 1686   _Vcvv 2790    C_ wss 3154   class class class wbr 4025   omcom 4658    ~~ cen 6862    ~<_ cdom 6863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-er 6662  df-en 6866  df-dom 6867
  Copyright terms: Public domain W3C validator