MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infensuc Unicode version

Theorem infensuc 7034
Description: Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
infensuc  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  ~~  suc  A )
Dummy variables  x  y are mutually distinct and distinct from all other variables.

Proof of Theorem infensuc
StepHypRef Expression
1 onprc 4575 . . . . 5  |-  -.  On  e.  _V
2 eleq1 2344 . . . . 5  |-  ( om  =  On  ->  ( om  e.  _V  <->  On  e.  _V ) )
31, 2mtbiri 296 . . . 4  |-  ( om  =  On  ->  -.  om  e.  _V )
4 ssexg 4161 . . . . 5  |-  ( ( om  C_  A  /\  A  e.  On )  ->  om  e.  _V )
54ancoms 441 . . . 4  |-  ( ( A  e.  On  /\  om  C_  A )  ->  om  e.  _V )
63, 5nsyl3 113 . . 3  |-  ( ( A  e.  On  /\  om  C_  A )  ->  -.  om  =  On )
7 omon 4666 . . . 4  |-  ( om  e.  On  \/  om  =  On )
87ori 366 . . 3  |-  ( -. 
om  e.  On  ->  om  =  On )
96, 8nsyl2 121 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  om  e.  On )
10 id 21 . . . . . . 7  |-  ( x  =  om  ->  x  =  om )
11 suceq 4456 . . . . . . 7  |-  ( x  =  om  ->  suc  x  =  suc  om )
1210, 11breq12d 4037 . . . . . 6  |-  ( x  =  om  ->  (
x  ~~  suc  x  <->  om  ~~  suc  om ) )
13 id 21 . . . . . . 7  |-  ( x  =  y  ->  x  =  y )
14 suceq 4456 . . . . . . 7  |-  ( x  =  y  ->  suc  x  =  suc  y )
1513, 14breq12d 4037 . . . . . 6  |-  ( x  =  y  ->  (
x  ~~  suc  x  <->  y  ~~  suc  y ) )
16 id 21 . . . . . . 7  |-  ( x  =  suc  y  ->  x  =  suc  y )
17 suceq 4456 . . . . . . 7  |-  ( x  =  suc  y  ->  suc  x  =  suc  suc  y )
1816, 17breq12d 4037 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  ~~  suc  x 
<->  suc  y  ~~  suc  suc  y ) )
19 id 21 . . . . . . 7  |-  ( x  =  A  ->  x  =  A )
20 suceq 4456 . . . . . . 7  |-  ( x  =  A  ->  suc  x  =  suc  A )
2119, 20breq12d 4037 . . . . . 6  |-  ( x  =  A  ->  (
x  ~~  suc  x  <->  A  ~~  suc  A ) )
22 limom 4670 . . . . . . 7  |-  Lim  om
2322limensuci 7032 . . . . . 6  |-  ( om  e.  On  ->  om  ~~  suc  om )
24 vex 2792 . . . . . . . . . 10  |-  y  e. 
_V
2524sucex 4601 . . . . . . . . . 10  |-  suc  y  e.  _V
26 en2sn 6935 . . . . . . . . . 10  |-  ( ( y  e.  _V  /\  suc  y  e.  _V )  ->  { y } 
~~  { suc  y } )
2724, 25, 26mp2an 655 . . . . . . . . 9  |-  { y }  ~~  { suc  y }
28 eloni 4401 . . . . . . . . . . . . 13  |-  ( y  e.  On  ->  Ord  y )
29 ordirr 4409 . . . . . . . . . . . . 13  |-  ( Ord  y  ->  -.  y  e.  y )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  -.  y  e.  y )
31 disjsn 3694 . . . . . . . . . . . 12  |-  ( ( y  i^i  { y } )  =  (/)  <->  -.  y  e.  y )
3230, 31sylibr 205 . . . . . . . . . . 11  |-  ( y  e.  On  ->  (
y  i^i  { y } )  =  (/) )
33 eloni 4401 . . . . . . . . . . . . 13  |-  ( suc  y  e.  On  ->  Ord 
suc  y )
34 ordirr 4409 . . . . . . . . . . . . 13  |-  ( Ord 
suc  y  ->  -.  suc  y  e.  suc  y )
3533, 34syl 17 . . . . . . . . . . . 12  |-  ( suc  y  e.  On  ->  -. 
suc  y  e.  suc  y )
36 sucelon 4607 . . . . . . . . . . . 12  |-  ( y  e.  On  <->  suc  y  e.  On )
37 disjsn 3694 . . . . . . . . . . . 12  |-  ( ( suc  y  i^i  { suc  y } )  =  (/) 
<->  -.  suc  y  e. 
suc  y )
3835, 36, 373imtr4i 259 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( suc  y  i^i  { suc  y } )  =  (/) )
3932, 38jca 520 . . . . . . . . . 10  |-  ( y  e.  On  ->  (
( y  i^i  {
y } )  =  (/)  /\  ( suc  y  i^i  { suc  y } )  =  (/) ) )
40 unen 6938 . . . . . . . . . . . 12  |-  ( ( ( y  ~~  suc  y  /\  { y } 
~~  { suc  y } )  /\  (
( y  i^i  {
y } )  =  (/)  /\  ( suc  y  i^i  { suc  y } )  =  (/) ) )  ->  ( y  u. 
{ y } ) 
~~  ( suc  y  u.  { suc  y } ) )
41 df-suc 4397 . . . . . . . . . . . 12  |-  suc  y  =  ( y  u. 
{ y } )
42 df-suc 4397 . . . . . . . . . . . 12  |-  suc  suc  y  =  ( suc  y  u.  { suc  y } )
4340, 41, 423brtr4g 4056 . . . . . . . . . . 11  |-  ( ( ( y  ~~  suc  y  /\  { y } 
~~  { suc  y } )  /\  (
( y  i^i  {
y } )  =  (/)  /\  ( suc  y  i^i  { suc  y } )  =  (/) ) )  ->  suc  y  ~~  suc  suc  y )
4443ex 425 . . . . . . . . . 10  |-  ( ( y  ~~  suc  y  /\  { y }  ~~  { suc  y } )  ->  ( ( ( y  i^i  { y } )  =  (/)  /\  ( suc  y  i^i 
{ suc  y }
)  =  (/) )  ->  suc  y  ~~  suc  suc  y ) )
4539, 44syl5 30 . . . . . . . . 9  |-  ( ( y  ~~  suc  y  /\  { y }  ~~  { suc  y } )  ->  ( y  e.  On  ->  suc  y  ~~  suc  suc  y ) )
4627, 45mpan2 654 . . . . . . . 8  |-  ( y 
~~  suc  y  ->  ( y  e.  On  ->  suc  y  ~~  suc  suc  y ) )
4746com12 29 . . . . . . 7  |-  ( y  e.  On  ->  (
y  ~~  suc  y  ->  suc  y  ~~  suc  suc  y ) )
4847ad2antrr 708 . . . . . 6  |-  ( ( ( y  e.  On  /\ 
om  e.  On )  /\  om  C_  y
)  ->  ( y  ~~  suc  y  ->  suc  y  ~~  suc  suc  y
) )
49 vex 2792 . . . . . . . . 9  |-  x  e. 
_V
50 limensuc 7033 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  ~~  suc  x )
5149, 50mpan 653 . . . . . . . 8  |-  ( Lim  x  ->  x  ~~  suc  x )
5251ad2antrr 708 . . . . . . 7  |-  ( ( ( Lim  x  /\  om  e.  On )  /\  om  C_  x )  ->  x  ~~  suc  x )
5352a1d 24 . . . . . 6  |-  ( ( ( Lim  x  /\  om  e.  On )  /\  om  C_  x )  ->  ( A. y  e.  x  ( om  C_  y  ->  y 
~~  suc  y )  ->  x  ~~  suc  x
) )
5412, 15, 18, 21, 23, 48, 53tfindsg 4650 . . . . 5  |-  ( ( ( A  e.  On  /\ 
om  e.  On )  /\  om  C_  A
)  ->  A  ~~  suc  A )
5554exp31 589 . . . 4  |-  ( A  e.  On  ->  ( om  e.  On  ->  ( om  C_  A  ->  A  ~~  suc  A ) ) )
5655com23 74 . . 3  |-  ( A  e.  On  ->  ( om  C_  A  ->  ( om  e.  On  ->  A  ~~  suc  A ) ) )
5756imp 420 . 2  |-  ( ( A  e.  On  /\  om  C_  A )  ->  ( om  e.  On  ->  A  ~~  suc  A ) )
589, 57mpd 16 1  |-  ( ( A  e.  On  /\  om  C_  A )  ->  A  ~~  suc  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2544   _Vcvv 2789    u. cun 3151    i^i cin 3152    C_ wss 3153   (/)c0 3456   {csn 3641   class class class wbr 4024   Ord word 4390   Oncon0 4391   Lim wlim 4392   suc csuc 4393   omcom 4655    ~~ cen 6855
This theorem is referenced by:  cardlim  7600  cardsucinf  7612
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-1o 6474  df-er 6655  df-en 6859  df-dom 6860
  Copyright terms: Public domain W3C validator