MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap Unicode version

Theorem infmap 8194
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. (Contributed by NM, 1-Oct-2004.) (Proof shortened by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap  |-  ( ( om  ~<_  A  /\  B  ~<_  A )  ->  ( A  ^m  B )  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
Distinct variable groups:    x, A    x, B

Proof of Theorem infmap
StepHypRef Expression
1 ovex 5845 . . 3  |-  ( A  ^m  B )  e. 
_V
2 numth3 8093 . . 3  |-  ( ( A  ^m  B )  e.  _V  ->  ( A  ^m  B )  e. 
dom  card )
31, 2ax-mp 8 . 2  |-  ( A  ^m  B )  e. 
dom  card
4 infmap2 7840 . 2  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  B )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  B ) } )
53, 4mp3an3 1266 1  |-  ( ( om  ~<_  A  /\  B  ~<_  A )  ->  ( A  ^m  B )  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1685   {cab 2270   _Vcvv 2789    C_ wss 3153   class class class wbr 4024   omcom 4655    dom cdm 4688  (class class class)co 5820    ^m cmap 6768    ~~ cen 6856    ~<_ cdom 6857   cardccrd 7564
This theorem is referenced by:  alephexp2  8199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-ac2 8085
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-oi 7221  df-card 7568  df-acn 7571  df-ac 7739
  Copyright terms: Public domain W3C validator