MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap2 Unicode version

Theorem infmap2 7777
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 8131 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap2  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  B )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  B ) } )
Distinct variable groups:    x, A    x, B

Proof of Theorem infmap2
StepHypRef Expression
1 oveq2 5765 . . 3  |-  ( B  =  (/)  ->  ( A  ^m  B )  =  ( A  ^m  (/) ) )
2 breq2 3967 . . . . 5  |-  ( B  =  (/)  ->  ( x 
~~  B  <->  x  ~~  (/) ) )
32anbi2d 687 . . . 4  |-  ( B  =  (/)  ->  ( ( x  C_  A  /\  x  ~~  B )  <->  ( x  C_  A  /\  x  ~~  (/) ) ) )
43abbidv 2370 . . 3  |-  ( B  =  (/)  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  =  {
x  |  ( x 
C_  A  /\  x  ~~  (/) ) } )
51, 4breq12d 3976 . 2  |-  ( B  =  (/)  ->  ( ( A  ^m  B ) 
~~  { x  |  ( x  C_  A  /\  x  ~~  B ) }  <->  ( A  ^m  (/) )  ~~  { x  |  ( x  C_  A  /\  x  ~~  (/) ) } ) )
6 simpl2 964 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  B  ~<_  A )
7 reldom 6802 . . . . . . . . . . 11  |-  Rel  ~<_
87brrelexi 4682 . . . . . . . . . 10  |-  ( B  ~<_  A  ->  B  e.  _V )
96, 8syl 17 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  B  e.  _V )
107brrelex2i 4683 . . . . . . . . . 10  |-  ( B  ~<_  A  ->  A  e.  _V )
116, 10syl 17 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  A  e.  _V )
12 xpcomeng 6887 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B  X.  A
)  ~~  ( A  X.  B ) )
139, 11, 12syl2anc 645 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( B  X.  A )  ~~  ( A  X.  B
) )
14 simpl3 965 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  ^m  B )  e. 
dom  card )
15 simpr 449 . . . . . . . . . . 11  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  B  =/=  (/) )
16 mapdom3 6966 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  B  =/=  (/) )  ->  A  ~<_  ( A  ^m  B ) )
1711, 9, 15, 16syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  A  ~<_  ( A  ^m  B ) )
18 numdom 7598 . . . . . . . . . 10  |-  ( ( ( A  ^m  B
)  e.  dom  card  /\  A  ~<_  ( A  ^m  B ) )  ->  A  e.  dom  card )
1914, 17, 18syl2anc 645 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  A  e.  dom  card )
20 simpl1 963 . . . . . . . . 9  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  om  ~<_  A )
21 infxpabs 7771 . . . . . . . . 9  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  A )
2219, 20, 15, 6, 21syl22anc 1188 . . . . . . . 8  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  X.  B )  ~~  A )
23 entr 6846 . . . . . . . 8  |-  ( ( ( B  X.  A
)  ~~  ( A  X.  B )  /\  ( A  X.  B )  ~~  A )  ->  ( B  X.  A )  ~~  A )
2413, 22, 23syl2anc 645 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( B  X.  A )  ~~  A )
25 ssenen 6968 . . . . . . 7  |-  ( ( B  X.  A ) 
~~  A  ->  { x  |  ( x  C_  ( B  X.  A
)  /\  x  ~~  B ) }  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
2624, 25syl 17 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  ( B  X.  A
)  /\  x  ~~  B ) }  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
27 relen 6801 . . . . . . 7  |-  Rel  ~~
2827brrelexi 4682 . . . . . 6  |-  ( { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) }  ->  { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }  e.  _V )
2926, 28syl 17 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  ( B  X.  A
)  /\  x  ~~  B ) }  e.  _V )
30 abid2 2373 . . . . . 6  |-  { x  |  x  e.  ( A  ^m  B ) }  =  ( A  ^m  B )
31 elmapi 6725 . . . . . . . 8  |-  ( x  e.  ( A  ^m  B )  ->  x : B --> A )
32 fssxp 5303 . . . . . . . . 9  |-  ( x : B --> A  ->  x  C_  ( B  X.  A ) )
33 ffun 5294 . . . . . . . . . . 11  |-  ( x : B --> A  ->  Fun  x )
34 vex 2743 . . . . . . . . . . . 12  |-  x  e. 
_V
3534fundmen 6867 . . . . . . . . . . 11  |-  ( Fun  x  ->  dom  x  ~~  x )
36 ensym 6843 . . . . . . . . . . 11  |-  ( dom  x  ~~  x  ->  x  ~~  dom  x )
3733, 35, 363syl 20 . . . . . . . . . 10  |-  ( x : B --> A  ->  x  ~~  dom  x )
38 fdm 5296 . . . . . . . . . 10  |-  ( x : B --> A  ->  dom  x  =  B )
3937, 38breqtrd 3987 . . . . . . . . 9  |-  ( x : B --> A  ->  x  ~~  B )
4032, 39jca 520 . . . . . . . 8  |-  ( x : B --> A  -> 
( x  C_  ( B  X.  A )  /\  x  ~~  B ) )
4131, 40syl 17 . . . . . . 7  |-  ( x  e.  ( A  ^m  B )  ->  (
x  C_  ( B  X.  A )  /\  x  ~~  B ) )
4241ss2abi 3187 . . . . . 6  |-  { x  |  x  e.  ( A  ^m  B ) } 
C_  { x  |  ( x  C_  ( B  X.  A )  /\  x  ~~  B ) }
4330, 42eqsstr3i 3151 . . . . 5  |-  ( A  ^m  B )  C_  { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }
44 ssdomg 6840 . . . . 5  |-  ( { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }  e.  _V  ->  ( ( A  ^m  B )  C_  { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) }  ->  ( A  ^m  B )  ~<_  { x  |  ( x  C_  ( B  X.  A )  /\  x  ~~  B ) } ) )
4529, 43, 44ee10 1372 . . . 4  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  ^m  B )  ~<_  { x  |  ( x 
C_  ( B  X.  A )  /\  x  ~~  B ) } )
46 domentr 6853 . . . 4  |-  ( ( ( A  ^m  B
)  ~<_  { x  |  ( x  C_  ( B  X.  A )  /\  x  ~~  B ) }  /\  { x  |  ( x  C_  ( B  X.  A )  /\  x  ~~  B ) } 
~~  { x  |  ( x  C_  A  /\  x  ~~  B ) } )  ->  ( A  ^m  B )  ~<_  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
4745, 26, 46syl2anc 645 . . 3  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  ^m  B )  ~<_  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
48 ovex 5782 . . . . . . 7  |-  ( A  ^m  B )  e. 
_V
4948mptex 5645 . . . . . 6  |-  ( f  e.  ( A  ^m  B )  |->  ran  f
)  e.  _V
5049rnex 4895 . . . . 5  |-  ran  ( 
f  e.  ( A  ^m  B )  |->  ran  f )  e.  _V
51 ensym 6843 . . . . . . . . . . . 12  |-  ( x 
~~  B  ->  B  ~~  x )
5251ad2antll 712 . . . . . . . . . . 11  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  B  ~~  x
)
53 bren 6804 . . . . . . . . . . 11  |-  ( B 
~~  x  <->  E. f 
f : B -1-1-onto-> x )
5452, 53sylib 190 . . . . . . . . . 10  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  E. f  f : B -1-1-onto-> x )
55 f1of 5375 . . . . . . . . . . . . . . . 16  |-  ( f : B -1-1-onto-> x  ->  f : B --> x )
5655adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  f : B
--> x )
57 simplrl 739 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  x  C_  A
)
58 fss 5300 . . . . . . . . . . . . . . 15  |-  ( ( f : B --> x  /\  x  C_  A )  -> 
f : B --> A )
5956, 57, 58syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  f : B
--> A )
60 elmapg 6718 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( A  ^m  B )  <-> 
f : B --> A ) )
6111, 9, 60syl2anc 645 . . . . . . . . . . . . . . 15  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  (
f  e.  ( A  ^m  B )  <->  f : B
--> A ) )
6261ad2antrr 709 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  ( f  e.  ( A  ^m  B
)  <->  f : B --> A ) )
6359, 62mpbird 225 . . . . . . . . . . . . 13  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  f  e.  ( A  ^m  B ) )
64 f1ofo 5382 . . . . . . . . . . . . . . . 16  |-  ( f : B -1-1-onto-> x  ->  f : B -onto-> x )
65 forn 5357 . . . . . . . . . . . . . . . 16  |-  ( f : B -onto-> x  ->  ran  f  =  x
)
6664, 65syl 17 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> x  ->  ran  f  =  x )
6766adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  ran  f  =  x )
6867eqcomd 2261 . . . . . . . . . . . . 13  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  x  =  ran  f )
6963, 68jca 520 . . . . . . . . . . . 12  |-  ( ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  /\  f : B -1-1-onto-> x
)  ->  ( f  e.  ( A  ^m  B
)  /\  x  =  ran  f ) )
7069ex 425 . . . . . . . . . . 11  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  ( f : B -1-1-onto-> x  ->  ( f  e.  ( A  ^m  B )  /\  x  =  ran  f ) ) )
7170eximdv 2019 . . . . . . . . . 10  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  ( E. f 
f : B -1-1-onto-> x  ->  E. f ( f  e.  ( A  ^m  B
)  /\  x  =  ran  f ) ) )
7254, 71mpd 16 . . . . . . . . 9  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  E. f ( f  e.  ( A  ^m  B )  /\  x  =  ran  f ) )
73 df-rex 2521 . . . . . . . . 9  |-  ( E. f  e.  ( A  ^m  B ) x  =  ran  f  <->  E. f
( f  e.  ( A  ^m  B )  /\  x  =  ran  f ) )
7472, 73sylibr 205 . . . . . . . 8  |-  ( ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  /\  (
x  C_  A  /\  x  ~~  B ) )  ->  E. f  e.  ( A  ^m  B ) x  =  ran  f
)
7574ex 425 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  (
( x  C_  A  /\  x  ~~  B )  ->  E. f  e.  ( A  ^m  B ) x  =  ran  f
) )
7675ss2abdv 3188 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  C_  { x  |  E. f  e.  ( A  ^m  B ) x  =  ran  f } )
77 eqid 2256 . . . . . . 7  |-  ( f  e.  ( A  ^m  B )  |->  ran  f
)  =  ( f  e.  ( A  ^m  B )  |->  ran  f
)
7877rnmpt 4878 . . . . . 6  |-  ran  ( 
f  e.  ( A  ^m  B )  |->  ran  f )  =  {
x  |  E. f  e.  ( A  ^m  B
) x  =  ran  f }
7976, 78syl6sseqr 3167 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  C_  ran  (  f  e.  ( A  ^m  B )  |->  ran  f ) )
80 ssdomg 6840 . . . . 5  |-  ( ran  (  f  e.  ( A  ^m  B ) 
|->  ran  f )  e. 
_V  ->  ( { x  |  ( x  C_  A  /\  x  ~~  B
) }  C_  ran  (  f  e.  ( A  ^m  B )  |->  ran  f )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ran  ( 
f  e.  ( A  ^m  B )  |->  ran  f ) ) )
8150, 79, 80mpsyl 61 . . . 4  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ran  ( 
f  e.  ( A  ^m  B )  |->  ran  f ) )
82 vex 2743 . . . . . . . . 9  |-  f  e. 
_V
8382rnex 4895 . . . . . . . 8  |-  ran  f  e.  _V
8483rgenw 2581 . . . . . . 7  |-  A. f  e.  ( A  ^m  B
) ran  f  e.  _V
8577fnmpt 5273 . . . . . . 7  |-  ( A. f  e.  ( A  ^m  B ) ran  f  e.  _V  ->  ( f  e.  ( A  ^m  B
)  |->  ran  f )  Fn  ( A  ^m  B
) )
8684, 85mp1i 13 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  (
f  e.  ( A  ^m  B )  |->  ran  f )  Fn  ( A  ^m  B ) )
87 dffn4 5360 . . . . . 6  |-  ( ( f  e.  ( A  ^m  B )  |->  ran  f )  Fn  ( A  ^m  B )  <->  ( f  e.  ( A  ^m  B
)  |->  ran  f ) : ( A  ^m  B ) -onto-> ran  ( 
f  e.  ( A  ^m  B )  |->  ran  f ) )
8886, 87sylib 190 . . . . 5  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  (
f  e.  ( A  ^m  B )  |->  ran  f ) : ( A  ^m  B )
-onto->
ran  (  f  e.  ( A  ^m  B
)  |->  ran  f )
)
89 fodomnum 7617 . . . . 5  |-  ( ( A  ^m  B )  e.  dom  card  ->  ( ( f  e.  ( A  ^m  B ) 
|->  ran  f ) : ( A  ^m  B
) -onto-> ran  (  f  e.  ( A  ^m  B
)  |->  ran  f )  ->  ran  (  f  e.  ( A  ^m  B
)  |->  ran  f )  ~<_  ( A  ^m  B ) ) )
9014, 88, 89sylc 58 . . . 4  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ran  (  f  e.  ( A  ^m  B )  |->  ran  f )  ~<_  ( A  ^m  B ) )
91 domtr 6847 . . . 4  |-  ( ( { x  |  ( x  C_  A  /\  x  ~~  B ) }  ~<_  ran  (  f  e.  ( A  ^m  B
)  |->  ran  f )  /\  ran  (  f  e.  ( A  ^m  B
)  |->  ran  f )  ~<_  ( A  ^m  B ) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ( A  ^m  B ) )
9281, 90, 91syl2anc 645 . . 3  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ( A  ^m  B ) )
93 sbth 6914 . . 3  |-  ( ( ( A  ^m  B
)  ~<_  { x  |  ( x  C_  A  /\  x  ~~  B ) }  /\  { x  |  ( x  C_  A  /\  x  ~~  B
) }  ~<_  ( A  ^m  B ) )  ->  ( A  ^m  B )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  B ) } )
9447, 92, 93syl2anc 645 . 2  |-  ( ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e. 
dom  card )  /\  B  =/=  (/) )  ->  ( A  ^m  B )  ~~  { x  |  ( x 
C_  A  /\  x  ~~  B ) } )
957brrelex2i 4683 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  _V )
96953ad2ant1 981 . . . 4  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  A  e.  _V )
97 map0e 6738 . . . 4  |-  ( A  e.  _V  ->  ( A  ^m  (/) )  =  1o )
9896, 97syl 17 . . 3  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  (/) )  =  1o )
99 1onn 6570 . . . . . 6  |-  1o  e.  om
10099elexi 2749 . . . . 5  |-  1o  e.  _V
101100enref 6827 . . . 4  |-  1o  ~~  1o
102 df-sn 3587 . . . . 5  |-  { (/) }  =  { x  |  x  =  (/) }
103 df1o2 6424 . . . . 5  |-  1o  =  { (/) }
104 en0 6857 . . . . . . . 8  |-  ( x 
~~  (/)  <->  x  =  (/) )
105104anbi2i 678 . . . . . . 7  |-  ( ( x  C_  A  /\  x  ~~  (/) )  <->  ( x  C_  A  /\  x  =  (/) ) )
106 0ss 3425 . . . . . . . . 9  |-  (/)  C_  A
107 sseq1 3141 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( x 
C_  A  <->  (/)  C_  A
) )
108106, 107mpbiri 226 . . . . . . . 8  |-  ( x  =  (/)  ->  x  C_  A )
109108pm4.71ri 617 . . . . . . 7  |-  ( x  =  (/)  <->  ( x  C_  A  /\  x  =  (/) ) )
110105, 109bitr4i 245 . . . . . 6  |-  ( ( x  C_  A  /\  x  ~~  (/) )  <->  x  =  (/) )
111110abbii 2368 . . . . 5  |-  { x  |  ( x  C_  A  /\  x  ~~  (/) ) }  =  { x  |  x  =  (/) }
112102, 103, 1113eqtr4ri 2287 . . . 4  |-  { x  |  ( x  C_  A  /\  x  ~~  (/) ) }  =  1o
113101, 112breqtrri 3988 . . 3  |-  1o  ~~  { x  |  ( x 
C_  A  /\  x  ~~  (/) ) }
11498, 113syl6eqbr 4000 . 2  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  (/) )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  (/) ) } )
1155, 94, 114pm2.61ne 2494 1  |-  ( ( om  ~<_  A  /\  B  ~<_  A  /\  ( A  ^m  B )  e.  dom  card )  ->  ( A  ^m  B )  ~~  {
x  |  ( x 
C_  A  /\  x  ~~  B ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621   {cab 2242    =/= wne 2419   A.wral 2516   E.wrex 2517   _Vcvv 2740    C_ wss 3094   (/)c0 3397   {csn 3581   class class class wbr 3963    e. cmpt 4017   omcom 4593    X. cxp 4624   dom cdm 4626   ran crn 4627   Fun wfun 4632    Fn wfn 4633   -->wf 4634   -onto->wfo 4636   -1-1-onto->wf1o 4637  (class class class)co 5757   1oc1o 6405    ^m cmap 6705    ~~ cen 6793    ~<_ cdom 6794   cardccrd 7501
This theorem is referenced by:  infmap  8131
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-oi 7158  df-card 7505  df-acn 7508
  Copyright terms: Public domain W3C validator