MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmxrgelb Unicode version

Theorem infmxrgelb 10846
Description: The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
infmxrgelb  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  A. x  e.  A  B  <_  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem infmxrgelb
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 10667 . . . . . . . 8  |-  <  Or  RR*
2 cnvso 5352 . . . . . . . 8  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
31, 2mpbi 200 . . . . . . 7  |-  `'  <  Or 
RR*
43a1i 11 . . . . . 6  |-  ( A 
C_  RR*  ->  `'  <  Or 
RR* )
5 xrinfmss2 10822 . . . . . 6  |-  ( A 
C_  RR*  ->  E. y  e.  RR*  ( A. z  e.  A  -.  y `'  <  z  /\  A. z  e.  RR*  ( z `'  <  y  ->  E. x  e.  A  z `'  <  x ) ) )
6 id 20 . . . . . 6  |-  ( A 
C_  RR*  ->  A  C_  RR* )
74, 5, 6suplub2 7400 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B `'  <  sup ( A ,  RR* ,  `'  <  )  <->  E. x  e.  A  B `'  <  x ) )
8 simpr 448 . . . . . 6  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
93supex 7402 . . . . . 6  |-  sup ( A ,  RR* ,  `'  <  )  e.  _V
10 brcnvg 4994 . . . . . 6  |-  ( ( B  e.  RR*  /\  sup ( A ,  RR* ,  `'  <  )  e.  _V )  ->  ( B `'  <  sup ( A ,  RR* ,  `'  <  )  <->  sup ( A ,  RR* ,  `'  <  )  <  B ) )
118, 9, 10sylancl 644 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B `'  <  sup ( A ,  RR* ,  `'  <  )  <->  sup ( A ,  RR* ,  `'  <  )  <  B ) )
12 vex 2903 . . . . . . 7  |-  x  e. 
_V
13 brcnvg 4994 . . . . . . 7  |-  ( ( B  e.  RR*  /\  x  e.  _V )  ->  ( B `'  <  x  <->  x  <  B ) )
148, 12, 13sylancl 644 . . . . . 6  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B `'  <  x  <->  x  <  B ) )
1514rexbidv 2671 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( E. x  e.  A  B `'  <  x  <->  E. x  e.  A  x  <  B ) )
167, 11, 153bitr3d 275 . . . 4  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( sup ( A ,  RR* ,  `'  <  )  <  B  <->  E. x  e.  A  x  <  B ) )
1716notbid 286 . . 3  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( -.  sup ( A ,  RR* ,  `'  <  )  <  B  <->  -.  E. x  e.  A  x  <  B ) )
18 ralnex 2660 . . 3  |-  ( A. x  e.  A  -.  x  <  B  <->  -.  E. x  e.  A  x  <  B )
1917, 18syl6bbr 255 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( -.  sup ( A ,  RR* ,  `'  <  )  <  B  <->  A. x  e.  A  -.  x  <  B ) )
20 id 20 . . 3  |-  ( B  e.  RR*  ->  B  e. 
RR* )
21 infmxrcl 10828 . . 3  |-  ( A 
C_  RR*  ->  sup ( A ,  RR* ,  `'  <  )  e.  RR* )
22 xrlenlt 9077 . . 3  |-  ( ( B  e.  RR*  /\  sup ( A ,  RR* ,  `'  <  )  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  -.  sup ( A ,  RR* ,  `'  <  )  <  B ) )
2320, 21, 22syl2anr 465 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  -. 
sup ( A ,  RR* ,  `'  <  )  <  B ) )
24 simplr 732 . . . 4  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  B  e.  RR* )
25 simpl 444 . . . . 5  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  A  C_ 
RR* )
2625sselda 3292 . . . 4  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  x  e.  RR* )
27 xrlenlt 9077 . . . 4  |-  ( ( B  e.  RR*  /\  x  e.  RR* )  ->  ( B  <_  x  <->  -.  x  <  B ) )
2824, 26, 27syl2anc 643 . . 3  |-  ( ( ( A  C_  RR*  /\  B  e.  RR* )  /\  x  e.  A )  ->  ( B  <_  x  <->  -.  x  <  B ) )
2928ralbidva 2666 . 2  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( A. x  e.  A  B  <_  x  <->  A. x  e.  A  -.  x  <  B ) )
3019, 23, 293bitr4d 277 1  |-  ( ( A  C_  RR*  /\  B  e.  RR* )  ->  ( B  <_  sup ( A ,  RR* ,  `'  <  )  <->  A. x  e.  A  B  <_  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1717   A.wral 2650   E.wrex 2651   _Vcvv 2900    C_ wss 3264   class class class wbr 4154    Or wor 4444   `'ccnv 4818   supcsup 7381   RR*cxr 9053    < clt 9054    <_ cle 9055
This theorem is referenced by:  infmxrre  10847  ixxlb  10871  limsuple  12200  limsupval2  12202  imasdsf1olem  18312  nmogelb  18622  metdsf  18750  metdsge  18751  ovolgelb  19244  ovolge0  19245  ovolsslem  19248  ovolicc2  19286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-po 4445  df-so 4446  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227
  Copyright terms: Public domain W3C validator