HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem infpn 9843
Description: There exist infinitely many prime numbers: for any natural number N, there exists a prime number j greater than N. (See infpn2 9844 for the equinumerosity version.)
Assertion
Ref Expression
infpn |- (N e. NN -> E.j e. NN (N < j /\ A.k e. NN ((j / k) e. NN -> (k = 1 \/ k = j))))
Distinct variable group:   j,k,N

Proof of Theorem infpn
StepHypRef Expression
1 eqid 1932 . 2 |- ((!` N) + 1) = ((!` N) + 1)
21infpnlem2 9842 1 |- (N e. NN -> E.j e. NN (N < j /\ A.k e. NN ((j / k) e. NN -> (k = 1 \/ k = j))))
Colors of variables: wff set class
Syntax hints:   -> wi 4   \/ wo 356   /\ wa 357   = wceq 1428   e. wcel 1430  A.wral 2141  E.wrex 2142   class class class wbr 3354  ` cfv 3999  (class class class)co 4914  1c1 6985   + caddc 6987   < clt 7096   / cdiv 7209  NNcn 7210  !cfa 8746
This theorem is referenced by:  infpn2 9844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1345  ax-6 1346  ax-7 1347  ax-gen 1348  ax-8 1432  ax-10 1433  ax-11 1434  ax-12 1435  ax-13 1436  ax-14 1437  ax-17 1444  ax-9 1459  ax-4 1465  ax-16 1643  ax-ext 1914  ax-rep 3440  ax-sep 3450  ax-nul 3459  ax-pow 3495  ax-pr 3519  ax-un 3791  ax-inf2 6055  ax-resscn 7038  ax-1cn 7039  ax-icn 7040  ax-addcl 7041  ax-addrcl 7042  ax-mulcl 7043  ax-mulrcl 7044  ax-mulcom 7045  ax-addass 7046  ax-mulass 7047  ax-distr 7048  ax-i2m1 7049  ax-1ne0 7050  ax-1rid 7051  ax-rnegex 7052  ax-rrecex 7053  ax-cnre 7054  ax-pre-lttri 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058
This theorem depends on definitions:  df-bi 175  df-or 358  df-an 359  df-3or 916  df-3an 917  df-tru 1323  df-ex 1350  df-sb 1605  df-eu 1832  df-mo 1833  df-clab 1920  df-cleq 1925  df-clel 1928  df-ne 2052  df-nel 2053  df-ral 2145  df-rex 2146  df-reu 2147  df-rab 2148  df-v 2339  df-sbc 2504  df-csb 2579  df-dif 2639  df-un 2641  df-in 2643  df-ss 2645  df-pss 2647  df-nul 2901  df-if 3002  df-pw 3060  df-sn 3077  df-pr 3078  df-tp 3079  df-op 3080  df-uni 3210  df-iun 3282  df-br 3355  df-opab 3409  df-tr 3424  df-eprel 3604  df-id 3607  df-po 3612  df-so 3626  df-fr 3645  df-we 3661  df-ord 3677  df-on 3678  df-lim 3679  df-suc 3680  df-om 3954  df-xp 4001  df-rel 4002  df-cnv 4003  df-co 4004  df-dm 4005  df-rn 4006  df-res 4007  df-ima 4008  df-fun 4009  df-fn 4010  df-f 4011  df-f1 4012  df-fo 4013  df-f1o 4014  df-fv 4015  df-ov 4916  df-oprab 4917  df-mpt 5051  df-mpt2 5052  df-1st 5150  df-2nd 5151  df-iota 5254  df-rdg 5340  df-er 5514  df-en 5659  df-dom 5660  df-sdom 5661  df-riota 5802  df-pnf 7097  df-mnf 7098  df-xr 7099  df-ltxr 7100  df-le 7101  df-sub 7226  df-neg 7228  df-div 7452  df-n 7691  df-n0 7861  df-z 7905  df-uz 8025  df-seq 8562  df-fac 8747
Copyright terms: Public domain