HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem infpn 11414
Description: There exist infinitely many prime numbers: for any natural number  N, there exists a prime number  j greater than  N. (See infpn2 11415 for the equinumerosity version.) (Contributed by NM, 1-Jun-2006.)
Assertion
Ref Expression
infpn  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Distinct variable group:    j, k, N

Proof of Theorem infpn
StepHypRef Expression
1 eqid 2082 . 2  |-  ( ( ! `  N )  +  1 )  =  ( ( ! `  N )  +  1 )
21infpnlem2 11413 1  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 356    /\ wa 357    = wceq 1536    e. wcel 1538   A.wral 2291   E.wrex 2292   class class class wbr 3600   ` cfv 4287  (class class class)co 5354   1c1 8138    + caddc 8140    < clt 8254    / cdiv 8375   NNcn 8376   !cfa 10212
This theorem is referenced by:  infpn2  11415
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1451  ax-6 1452  ax-7 1453  ax-gen 1454  ax-8 1540  ax-11 1541  ax-13 1542  ax-14 1543  ax-17 1545  ax-12o 1578  ax-10 1592  ax-9 1598  ax-4 1606  ax-16 1793  ax-ext 2064  ax-sep 3715  ax-nul 3723  ax-pow 3759  ax-pr 3783  ax-un 4075  ax-cnex 8192  ax-resscn 8193  ax-1cn 8194  ax-icn 8195  ax-addcl 8196  ax-addrcl 8197  ax-mulcl 8198  ax-mulrcl 8199  ax-mulcom 8200  ax-addass 8201  ax-mulass 8202  ax-distr 8203  ax-i2m1 8204  ax-1ne0 8205  ax-1rid 8206  ax-rnegex 8207  ax-rrecex 8208  ax-cnre 8209  ax-pre-lttri 8210  ax-pre-lttrn 8211  ax-pre-ltadd 8212  ax-pre-mulgt0 8213
This theorem depends on definitions:  df-bi 175  df-or 358  df-an 359  df-3or 904  df-3an 905  df-tru 1268  df-ex 1456  df-sb 1754  df-eu 1976  df-mo 1977  df-clab 2070  df-cleq 2075  df-clel 2078  df-ne 2201  df-nel 2202  df-ral 2295  df-rex 2296  df-reu 2297  df-rab 2298  df-v 2494  df-sbc 2668  df-csb 2750  df-dif 2813  df-un 2815  df-in 2817  df-ss 2821  df-pss 2823  df-nul 3089  df-if 3199  df-pw 3260  df-sn 3278  df-pr 3279  df-tp 3280  df-op 3281  df-uni 3439  df-iun 3516  df-br 3601  df-opab 3655  df-mpt 3656  df-tr 3688  df-eprel 3870  df-id 3874  df-po 3879  df-so 3880  df-fr 3917  df-we 3919  df-ord 3960  df-on 3961  df-lim 3962  df-suc 3963  df-om 4243  df-xp 4289  df-rel 4290  df-cnv 4291  df-co 4292  df-dm 4293  df-rn 4294  df-res 4295  df-ima 4296  df-fun 4297  df-fn 4298  df-f 4299  df-f1 4300  df-fo 4301  df-f1o 4302  df-fv 4303  df-ov 5357  df-oprab 5358  df-mpt2 5359  df-2nd 5609  df-iota 5762  df-recs 5835  df-rdg 5870  df-er 6102  df-en 6289  df-dom 6290  df-sdom 6291  df-riota 6455  df-pnf 8255  df-mnf 8256  df-xr 8257  df-ltxr 8258  df-le 8259  df-sub 8392  df-neg 8393  df-div 8621  df-n 8863  df-n0 9056  df-z 9108  df-uz 9305  df-seq 10021  df-fac 10213
Copyright terms: Public domain