HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem infpn 12064
Description: There exist infinitely many prime numbers: for any natural number  N, there exists a prime number  j greater than  N. (See infpn2 12065 for the equinumerosity version.) (Contributed by NM, 1-Jun-2006.)
Assertion
Ref Expression
infpn  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Distinct variable group:    j, k, N

Proof of Theorem infpn
StepHypRef Expression
1 eqid 2064 . 2  |-  ( ( ! `  N )  +  1 )  =  ( ( ! `  N )  +  1 )
21infpnlem2 12063 1  |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  < 
j  /\  A. k  e.  NN  ( ( j  /  k )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 355    /\ wa 356    = wceq 1520    e. wcel 1522   A.wral 2274   E.wrex 2275   class class class wbr 3586   ` cfv 4268  (class class class)co 5360   1c1 8159    + caddc 8161    < clt 8286    / cdiv 8815   NNcn 9124   !cfa 10642
This theorem is referenced by:  infpn2  12065
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-5 1442  ax-6 1443  ax-7 1444  ax-gen 1445  ax-8 1524  ax-11 1525  ax-13 1526  ax-14 1527  ax-17 1529  ax-12o 1562  ax-10 1576  ax-9 1582  ax-4 1589  ax-16 1775  ax-ext 2046  ax-sep 3701  ax-nul 3709  ax-pow 3745  ax-pr 3769  ax-un 4061  ax-cnex 8213  ax-resscn 8214  ax-1cn 8215  ax-icn 8216  ax-addcl 8217  ax-addrcl 8218  ax-mulcl 8219  ax-mulrcl 8220  ax-mulcom 8221  ax-addass 8222  ax-mulass 8223  ax-distr 8224  ax-i2m1 8225  ax-1ne0 8226  ax-1rid 8227  ax-rnegex 8228  ax-rrecex 8229  ax-cnre 8230  ax-pre-lttri 8231  ax-pre-lttrn 8232  ax-pre-ltadd 8233  ax-pre-mulgt0 8234
This theorem depends on definitions:  df-bi 175  df-or 357  df-an 358  df-3or 897  df-3an 898  df-tru 1259  df-ex 1447  df-sb 1736  df-eu 1958  df-mo 1959  df-clab 2052  df-cleq 2057  df-clel 2060  df-ne 2184  df-nel 2185  df-ral 2278  df-rex 2279  df-reu 2280  df-rab 2281  df-v 2477  df-sbc 2651  df-csb 2733  df-dif 2796  df-un 2798  df-in 2800  df-ss 2804  df-pss 2806  df-nul 3073  df-if 3182  df-pw 3243  df-sn 3261  df-pr 3262  df-tp 3263  df-op 3264  df-uni 3425  df-iun 3502  df-br 3587  df-opab 3641  df-mpt 3642  df-tr 3674  df-eprel 3856  df-id 3860  df-po 3865  df-so 3866  df-fr 3903  df-we 3905  df-ord 3946  df-on 3947  df-lim 3948  df-suc 3949  df-om 4224  df-xp 4270  df-rel 4271  df-cnv 4272  df-co 4273  df-dm 4274  df-rn 4275  df-res 4276  df-ima 4277  df-fun 4278  df-fn 4279  df-f 4280  df-f1 4281  df-fo 4282  df-f1o 4283  df-fv 4284  df-ov 5363  df-oprab 5364  df-mpt2 5365  df-2nd 5615  df-iota 5770  df-recs 5843  df-rdg 5878  df-er 6115  df-en 6302  df-dom 6303  df-sdom 6304  df-riota 6468  df-pnf 8287  df-mnf 8288  df-xr 8289  df-ltxr 8290  df-le 8291  df-sub 8452  df-neg 8453  df-div 8816  df-n 9125  df-n0 9335  df-z 9394  df-uz 9600  df-seq 10402  df-fac 10643
Copyright terms: Public domain