MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpn2 Unicode version

Theorem infpn2 13269
Description: There exist infinitely many prime numbers: the set of all primes  S is unbounded by infpn 13268, so by unben 13265 it is infinite. (Contributed by NM, 5-May-2005.)
Hypothesis
Ref Expression
infpn2.1  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
Assertion
Ref Expression
infpn2  |-  S  ~~  NN
Distinct variable group:    m, n
Allowed substitution hints:    S( m, n)

Proof of Theorem infpn2
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infpn2.1 . . 3  |-  S  =  { n  e.  NN  |  ( 1  < 
n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }
2 ssrab2 3420 . . 3  |-  { n  e.  NN  |  ( 1  <  n  /\  A. m  e.  NN  (
( n  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) ) }  C_  NN
31, 2eqsstri 3370 . 2  |-  S  C_  NN
4 infpn 13268 . . . . 5  |-  ( j  e.  NN  ->  E. k  e.  NN  ( j  < 
k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) )
5 nnge1 10015 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  1  <_  j )
65adantr 452 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  1  <_  j )
7 nnre 9996 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  j  e.  RR )
8 nnre 9996 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  RR )
9 1re 9079 . . . . . . . . . . . 12  |-  1  e.  RR
10 lelttr 9154 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  j  e.  RR  /\  k  e.  RR )  ->  (
( 1  <_  j  /\  j  <  k )  ->  1  <  k
) )
119, 10mp3an1 1266 . . . . . . . . . . 11  |-  ( ( j  e.  RR  /\  k  e.  RR )  ->  ( ( 1  <_ 
j  /\  j  <  k )  ->  1  <  k ) )
127, 8, 11syl2an 464 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( ( 1  <_ 
j  /\  j  <  k )  ->  1  <  k ) )
136, 12mpand 657 . . . . . . . . 9  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( j  <  k  ->  1  <  k ) )
1413ancld 537 . . . . . . . 8  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( j  <  k  ->  ( j  <  k  /\  1  <  k ) ) )
1514anim1d 548 . . . . . . 7  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( ( j  < 
k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  ->  ( (
j  <  k  /\  1  <  k )  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
16 anass 631 . . . . . . 7  |-  ( ( ( j  <  k  /\  1  <  k )  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  <->  ( j  < 
k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
1715, 16syl6ib 218 . . . . . 6  |-  ( ( j  e.  NN  /\  k  e.  NN )  ->  ( ( j  < 
k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  ->  ( j  <  k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) ) )
1817reximdva 2810 . . . . 5  |-  ( j  e.  NN  ->  ( E. k  e.  NN  ( j  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  ->  E. k  e.  NN  ( j  <  k  /\  ( 1  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) ) )
194, 18mpd 15 . . . 4  |-  ( j  e.  NN  ->  E. k  e.  NN  ( j  < 
k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
20 breq2 4208 . . . . . . . . 9  |-  ( n  =  k  ->  (
1  <  n  <->  1  <  k ) )
21 oveq1 6079 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
n  /  m )  =  ( k  /  m ) )
2221eleq1d 2501 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( n  /  m
)  e.  NN  <->  ( k  /  m )  e.  NN ) )
23 equequ2 1698 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
m  =  n  <->  m  =  k ) )
2423orbi2d 683 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( m  =  1  \/  m  =  n )  <->  ( m  =  1  \/  m  =  k ) ) )
2522, 24imbi12d 312 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  ( (
k  /  m )  e.  NN  ->  (
m  =  1  \/  m  =  k ) ) ) )
2625ralbidv 2717 . . . . . . . . 9  |-  ( n  =  k  ->  ( A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) )  <->  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) )
2720, 26anbi12d 692 . . . . . . . 8  |-  ( n  =  k  ->  (
( 1  <  n  /\  A. m  e.  NN  ( ( n  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  n ) ) )  <->  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
2827, 1elrab2 3086 . . . . . . 7  |-  ( k  e.  S  <->  ( k  e.  NN  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
2928anbi1i 677 . . . . . 6  |-  ( ( k  e.  S  /\  j  <  k )  <->  ( (
k  e.  NN  /\  ( 1  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) )  /\  j  <  k
) )
30 anass 631 . . . . . 6  |-  ( ( ( k  e.  NN  /\  ( 1  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) )  /\  j  <  k
)  <->  ( k  e.  NN  /\  ( ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  /\  j  <  k ) ) )
31 ancom 438 . . . . . . 7  |-  ( ( ( 1  <  k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  /\  j  <  k )  <->  ( j  <  k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
3231anbi2i 676 . . . . . 6  |-  ( ( k  e.  NN  /\  ( ( 1  < 
k  /\  A. m  e.  NN  ( ( k  /  m )  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) )  /\  j  < 
k ) )  <->  ( k  e.  NN  /\  ( j  <  k  /\  (
1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) ) )
3329, 30, 323bitri 263 . . . . 5  |-  ( ( k  e.  S  /\  j  <  k )  <->  ( k  e.  NN  /\  ( j  <  k  /\  (
1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) ) )
3433rexbii2 2726 . . . 4  |-  ( E. k  e.  S  j  <  k  <->  E. k  e.  NN  ( j  < 
k  /\  ( 1  <  k  /\  A. m  e.  NN  (
( k  /  m
)  e.  NN  ->  ( m  =  1  \/  m  =  k ) ) ) ) )
3519, 34sylibr 204 . . 3  |-  ( j  e.  NN  ->  E. k  e.  S  j  <  k )
3635rgen 2763 . 2  |-  A. j  e.  NN  E. k  e.  S  j  <  k
37 unben 13265 . 2  |-  ( ( S  C_  NN  /\  A. j  e.  NN  E. k  e.  S  j  <  k )  ->  S  ~~  NN )
383, 36, 37mp2an 654 1  |-  S  ~~  NN
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   {crab 2701    C_ wss 3312   class class class wbr 4204  (class class class)co 6072    ~~ cen 7097   RRcr 8978   1c1 8980    < clt 9109    <_ cle 9110    / cdiv 9666   NNcn 9989
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-n0 10211  df-z 10272  df-uz 10478  df-seq 11312  df-fac 11555
  Copyright terms: Public domain W3C validator