MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxp Unicode version

Theorem infxp 7809
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxp  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( A  u.  B )
)

Proof of Theorem infxp
StepHypRef Expression
1 sdomdom 6857 . . 3  |-  ( B 
~<  A  ->  B  ~<_  A )
2 infxpabs 7806 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  A )
3 infunabs 7801 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  u.  B )  ~~  A )
433expa 1156 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  B  ~<_  A )  -> 
( A  u.  B
)  ~~  A )
54adantrl 699 . . . . . . 7  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  u.  B
)  ~~  A )
6 ensym 6878 . . . . . . 7  |-  ( ( A  u.  B ) 
~~  A  ->  A  ~~  ( A  u.  B
) )
75, 6syl 17 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  ->  A  ~~  ( A  u.  B ) )
8 entr 6881 . . . . . 6  |-  ( ( ( A  X.  B
)  ~~  A  /\  A  ~~  ( A  u.  B ) )  -> 
( A  X.  B
)  ~~  ( A  u.  B ) )
92, 7, 8syl2anc 645 . . . . 5  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  ( A  u.  B ) )
109expr 601 . . . 4  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  B  =/=  (/) )  ->  ( B  ~<_  A  ->  ( A  X.  B )  ~~  ( A  u.  B
) ) )
1110adantrl 699 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( B  ~<_  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
121, 11syl5 30 . 2  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( B  ~<  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
13 domtri2 7590 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
1413ad2ant2r 730 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
15 xpcomeng 6922 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
1615ad2ant2r 730 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
1716adantr 453 . . . . 5  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  X.  B )  ~~  ( B  X.  A
) )
18 simplrl 739 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  B  e.  dom  card )
19 simplr 734 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  om  ~<_  A )
20 domtr 6882 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  ~<_  B )  ->  om  ~<_  B )
2119, 20sylan 459 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  om  ~<_  B )
22 infn0 7087 . . . . . . . . 9  |-  ( om  ~<_  A  ->  A  =/=  (/) )
2322ad2antlr 710 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  A  =/=  (/) )
2423adantr 453 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  A  =/=  (/) )
25 simpr 449 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  A  ~<_  B )
26 infxpabs 7806 . . . . . . 7  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( A  =/=  (/)  /\  A  ~<_  B ) )  -> 
( B  X.  A
)  ~~  B )
2718, 21, 24, 25, 26syl22anc 1188 . . . . . 6  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  X.  A )  ~~  B )
28 uncom 3294 . . . . . . . 8  |-  ( A  u.  B )  =  ( B  u.  A
)
29 infunabs 7801 . . . . . . . . 9  |-  ( ( B  e.  dom  card  /\ 
om  ~<_  B  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
3018, 21, 25, 29syl3anc 1187 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
3128, 30syl5eqbr 4030 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  u.  B )  ~~  B )
32 ensym 6878 . . . . . . 7  |-  ( ( A  u.  B ) 
~~  B  ->  B  ~~  ( A  u.  B
) )
3331, 32syl 17 . . . . . 6  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  B  ~~  ( A  u.  B
) )
34 entr 6881 . . . . . 6  |-  ( ( ( B  X.  A
)  ~~  B  /\  B  ~~  ( A  u.  B ) )  -> 
( B  X.  A
)  ~~  ( A  u.  B ) )
3527, 33, 34syl2anc 645 . . . . 5  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  X.  A )  ~~  ( A  u.  B
) )
36 entr 6881 . . . . 5  |-  ( ( ( A  X.  B
)  ~~  ( B  X.  A )  /\  ( B  X.  A )  ~~  ( A  u.  B
) )  ->  ( A  X.  B )  ~~  ( A  u.  B
) )
3717, 35, 36syl2anc 645 . . . 4  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  X.  B )  ~~  ( A  u.  B
) )
3837ex 425 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  ~<_  B  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
3914, 38sylbird 228 . 2  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( -.  B  ~<  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
4012, 39pm2.61d 152 1  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621    =/= wne 2421    u. cun 3125   (/)c0 3430   class class class wbr 3997   omcom 4628    X. cxp 4659   dom cdm 4661    ~~ cen 6828    ~<_ cdom 6829    ~< csdm 6830   cardccrd 7536
This theorem is referenced by:  alephmul  8168  infxpg  24462
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-oi 7193  df-card 7540  df-cda 7762
  Copyright terms: Public domain W3C validator