MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxp Unicode version

Theorem infxp 7774
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxp  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( A  u.  B )
)

Proof of Theorem infxp
StepHypRef Expression
1 sdomdom 6822 . . 3  |-  ( B 
~<  A  ->  B  ~<_  A )
2 infxpabs 7771 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  A )
3 infunabs 7766 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  u.  B )  ~~  A )
433expa 1156 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  B  ~<_  A )  -> 
( A  u.  B
)  ~~  A )
54adantrl 699 . . . . . . 7  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  u.  B
)  ~~  A )
6 ensym 6843 . . . . . . 7  |-  ( ( A  u.  B ) 
~~  A  ->  A  ~~  ( A  u.  B
) )
75, 6syl 17 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  ->  A  ~~  ( A  u.  B ) )
8 entr 6846 . . . . . 6  |-  ( ( ( A  X.  B
)  ~~  A  /\  A  ~~  ( A  u.  B ) )  -> 
( A  X.  B
)  ~~  ( A  u.  B ) )
92, 7, 8syl2anc 645 . . . . 5  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  ( A  u.  B ) )
109expr 601 . . . 4  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  B  =/=  (/) )  ->  ( B  ~<_  A  ->  ( A  X.  B )  ~~  ( A  u.  B
) ) )
1110adantrl 699 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( B  ~<_  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
121, 11syl5 30 . 2  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( B  ~<  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
13 domtri2 7555 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
1413ad2ant2r 730 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
15 xpcomeng 6887 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
1615ad2ant2r 730 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
1716adantr 453 . . . . 5  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  X.  B )  ~~  ( B  X.  A
) )
18 simplrl 739 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  B  e.  dom  card )
19 simplr 734 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  om  ~<_  A )
20 domtr 6847 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  ~<_  B )  ->  om  ~<_  B )
2119, 20sylan 459 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  om  ~<_  B )
22 infn0 7052 . . . . . . . . 9  |-  ( om  ~<_  A  ->  A  =/=  (/) )
2322ad2antlr 710 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  A  =/=  (/) )
2423adantr 453 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  A  =/=  (/) )
25 simpr 449 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  A  ~<_  B )
26 infxpabs 7771 . . . . . . 7  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( A  =/=  (/)  /\  A  ~<_  B ) )  -> 
( B  X.  A
)  ~~  B )
2718, 21, 24, 25, 26syl22anc 1188 . . . . . 6  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  X.  A )  ~~  B )
28 uncom 3261 . . . . . . . 8  |-  ( A  u.  B )  =  ( B  u.  A
)
29 infunabs 7766 . . . . . . . . 9  |-  ( ( B  e.  dom  card  /\ 
om  ~<_  B  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
3018, 21, 25, 29syl3anc 1187 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
3128, 30syl5eqbr 3996 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  u.  B )  ~~  B )
32 ensym 6843 . . . . . . 7  |-  ( ( A  u.  B ) 
~~  B  ->  B  ~~  ( A  u.  B
) )
3331, 32syl 17 . . . . . 6  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  B  ~~  ( A  u.  B
) )
34 entr 6846 . . . . . 6  |-  ( ( ( B  X.  A
)  ~~  B  /\  B  ~~  ( A  u.  B ) )  -> 
( B  X.  A
)  ~~  ( A  u.  B ) )
3527, 33, 34syl2anc 645 . . . . 5  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  X.  A )  ~~  ( A  u.  B
) )
36 entr 6846 . . . . 5  |-  ( ( ( A  X.  B
)  ~~  ( B  X.  A )  /\  ( B  X.  A )  ~~  ( A  u.  B
) )  ->  ( A  X.  B )  ~~  ( A  u.  B
) )
3717, 35, 36syl2anc 645 . . . 4  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  X.  B )  ~~  ( A  u.  B
) )
3837ex 425 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  ~<_  B  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
3914, 38sylbird 228 . 2  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( -.  B  ~<  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
4012, 39pm2.61d 152 1  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621    =/= wne 2419    u. cun 3092   (/)c0 3397   class class class wbr 3963   omcom 4593    X. cxp 4624   dom cdm 4626    ~~ cen 6793    ~<_ cdom 6794    ~< csdm 6795   cardccrd 7501
This theorem is referenced by:  alephmul  8133  infxpg  24426
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-oi 7158  df-card 7505  df-cda 7727
  Copyright terms: Public domain W3C validator