MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxp Unicode version

Theorem infxp 7988
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxp  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( A  u.  B )
)

Proof of Theorem infxp
StepHypRef Expression
1 sdomdom 7032 . . 3  |-  ( B 
~<  A  ->  B  ~<_  A )
2 infxpabs 7985 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  A )
3 infunabs 7980 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<_  A )  ->  ( A  u.  B )  ~~  A )
433expa 1152 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  B  ~<_  A )  -> 
( A  u.  B
)  ~~  A )
54adantrl 696 . . . . . . 7  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  u.  B
)  ~~  A )
6 ensym 7053 . . . . . . 7  |-  ( ( A  u.  B ) 
~~  A  ->  A  ~~  ( A  u.  B
) )
75, 6syl 15 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  ->  A  ~~  ( A  u.  B ) )
8 entr 7056 . . . . . 6  |-  ( ( ( A  X.  B
)  ~~  A  /\  A  ~~  ( A  u.  B ) )  -> 
( A  X.  B
)  ~~  ( A  u.  B ) )
92, 7, 8syl2anc 642 . . . . 5  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  =/=  (/)  /\  B  ~<_  A ) )  -> 
( A  X.  B
)  ~~  ( A  u.  B ) )
109expr 598 . . . 4  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  B  =/=  (/) )  ->  ( B  ~<_  A  ->  ( A  X.  B )  ~~  ( A  u.  B
) ) )
1110adantrl 696 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( B  ~<_  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
121, 11syl5 28 . 2  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( B  ~<  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
13 domtri2 7769 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
1413ad2ant2r 727 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
15 xpcomeng 7097 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
1615ad2ant2r 727 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( B  X.  A ) )
1716adantr 451 . . . . 5  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  X.  B )  ~~  ( B  X.  A
) )
18 simplrl 736 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  B  e.  dom  card )
19 simplr 731 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  om  ~<_  A )
20 domtr 7057 . . . . . . . 8  |-  ( ( om  ~<_  A  /\  A  ~<_  B )  ->  om  ~<_  B )
2119, 20sylan 457 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  om  ~<_  B )
22 infn0 7266 . . . . . . . . 9  |-  ( om  ~<_  A  ->  A  =/=  (/) )
2322ad2antlr 707 . . . . . . . 8  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  A  =/=  (/) )
2423adantr 451 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  A  =/=  (/) )
25 simpr 447 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  A  ~<_  B )
26 infxpabs 7985 . . . . . . 7  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( A  =/=  (/)  /\  A  ~<_  B ) )  -> 
( B  X.  A
)  ~~  B )
2718, 21, 24, 25, 26syl22anc 1184 . . . . . 6  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  X.  A )  ~~  B )
28 uncom 3407 . . . . . . . 8  |-  ( A  u.  B )  =  ( B  u.  A
)
29 infunabs 7980 . . . . . . . . 9  |-  ( ( B  e.  dom  card  /\ 
om  ~<_  B  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
3018, 21, 25, 29syl3anc 1183 . . . . . . . 8  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  u.  A )  ~~  B )
3128, 30syl5eqbr 4158 . . . . . . 7  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  u.  B )  ~~  B )
32 ensym 7053 . . . . . . 7  |-  ( ( A  u.  B ) 
~~  B  ->  B  ~~  ( A  u.  B
) )
3331, 32syl 15 . . . . . 6  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  B  ~~  ( A  u.  B
) )
34 entr 7056 . . . . . 6  |-  ( ( ( B  X.  A
)  ~~  B  /\  B  ~~  ( A  u.  B ) )  -> 
( B  X.  A
)  ~~  ( A  u.  B ) )
3527, 33, 34syl2anc 642 . . . . 5  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( B  X.  A )  ~~  ( A  u.  B
) )
36 entr 7056 . . . . 5  |-  ( ( ( A  X.  B
)  ~~  ( B  X.  A )  /\  ( B  X.  A )  ~~  ( A  u.  B
) )  ->  ( A  X.  B )  ~~  ( A  u.  B
) )
3717, 35, 36syl2anc 642 . . . 4  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  ( B  e. 
dom  card  /\  B  =/=  (/) ) )  /\  A  ~<_  B )  ->  ( A  X.  B )  ~~  ( A  u.  B
) )
3837ex 423 . . 3  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  ~<_  B  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
3914, 38sylbird 226 . 2  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( -.  B  ~<  A  ->  ( A  X.  B )  ~~  ( A  u.  B )
) )
4012, 39pm2.61d 150 1  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( B  e.  dom  card  /\  B  =/=  (/) ) )  ->  ( A  X.  B )  ~~  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1715    =/= wne 2529    u. cun 3236   (/)c0 3543   class class class wbr 4125   omcom 4759    X. cxp 4790   dom cdm 4792    ~~ cen 7003    ~<_ cdom 7004    ~< csdm 7005   cardccrd 7715
This theorem is referenced by:  alephmul  8347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-oi 7372  df-card 7719  df-cda 7941
  Copyright terms: Public domain W3C validator