MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpidm2 Unicode version

Theorem infxpidm2 7734
Description: The cross product of an infinite set with itself is idempotent. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 8274. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxpidm2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )

Proof of Theorem infxpidm2
StepHypRef Expression
1 cardid2 7676 . . . . . 6  |-  ( A  e.  dom  card  ->  (
card `  A )  ~~  A )
2 ensym 6998 . . . . . 6  |-  ( (
card `  A )  ~~  A  ->  A  ~~  ( card `  A )
)
31, 2syl 15 . . . . 5  |-  ( A  e.  dom  card  ->  A 
~~  ( card `  A
) )
4 xpen 7112 . . . . 5  |-  ( ( A  ~~  ( card `  A )  /\  A  ~~  ( card `  A
) )  ->  ( A  X.  A )  ~~  ( ( card `  A
)  X.  ( card `  A ) ) )
53, 3, 4syl2anc 642 . . . 4  |-  ( A  e.  dom  card  ->  ( A  X.  A ) 
~~  ( ( card `  A )  X.  ( card `  A ) ) )
65adantr 451 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  ( ( card `  A )  X.  ( card `  A
) ) )
7 cardon 7667 . . . 4  |-  ( card `  A )  e.  On
8 cardom 7709 . . . . 5  |-  ( card `  om )  =  om
9 omelon 7437 . . . . . . . 8  |-  om  e.  On
10 onenon 7672 . . . . . . . 8  |-  ( om  e.  On  ->  om  e.  dom  card )
119, 10ax-mp 8 . . . . . . 7  |-  om  e.  dom  card
12 carddom2 7700 . . . . . . 7  |-  ( ( om  e.  dom  card  /\  A  e.  dom  card )  ->  ( ( card `  om )  C_  ( card `  A )  <->  om  ~<_  A ) )
1311, 12mpan 651 . . . . . 6  |-  ( A  e.  dom  card  ->  ( ( card `  om )  C_  ( card `  A
)  <->  om  ~<_  A ) )
1413biimpar 471 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( card `  om )  C_  ( card `  A )
)
158, 14syl5eqssr 3299 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  om  C_  ( card `  A
) )
16 infxpen 7732 . . . 4  |-  ( ( ( card `  A
)  e.  On  /\  om  C_  ( card `  A
) )  ->  (
( card `  A )  X.  ( card `  A
) )  ~~  ( card `  A ) )
177, 15, 16sylancr 644 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ( card `  A
)  X.  ( card `  A ) )  ~~  ( card `  A )
)
18 entr 7001 . . 3  |-  ( ( ( A  X.  A
)  ~~  ( ( card `  A )  X.  ( card `  A
) )  /\  (
( card `  A )  X.  ( card `  A
) )  ~~  ( card `  A ) )  ->  ( A  X.  A )  ~~  ( card `  A ) )
196, 17, 18syl2anc 642 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  ( card `  A ) )
201adantr 451 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( card `  A )  ~~  A )
21 entr 7001 . 2  |-  ( ( ( A  X.  A
)  ~~  ( card `  A )  /\  ( card `  A )  ~~  A )  ->  ( A  X.  A )  ~~  A )
2219, 20, 21syl2anc 642 1  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1710    C_ wss 3228   class class class wbr 4104   Oncon0 4474   omcom 4738    X. cxp 4769   dom cdm 4771   ` cfv 5337    ~~ cen 6948    ~<_ cdom 6949   cardccrd 7658
This theorem is referenced by:  infpwfien  7779  mappwen  7829  infcdaabs  7922  infxpdom  7927  fin67  8111  infxpidm  8274  ttac  26452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-oi 7315  df-card 7662
  Copyright terms: Public domain W3C validator