MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iniseg Unicode version

Theorem iniseg 4997
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.)
Assertion
Ref Expression
iniseg  |-  ( B  e.  V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem iniseg
StepHypRef Expression
1 elex 2748 . 2  |-  ( B  e.  V  ->  B  e.  _V )
2 vex 2743 . . . 4  |-  x  e. 
_V
32eliniseg 4995 . . 3  |-  ( B  e.  _V  ->  (
x  e.  ( `' A " { B } )  <->  x A B ) )
43abbi2dv 2371 . 2  |-  ( B  e.  _V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
51, 4syl 17 1  |-  ( B  e.  V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   {cab 2242   _Vcvv 2740   {csn 3581   class class class wbr 3963   `'ccnv 4625   "cima 4629
This theorem is referenced by:  dffr3  4998  dfse2  4999  dfpred2  23509  inisegn0  26472
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-xp 4640  df-cnv 4642  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647
  Copyright terms: Public domain W3C validator