MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iniseg Unicode version

Theorem iniseg 4951
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.)
Assertion
Ref Expression
iniseg  |-  ( B  e.  V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem iniseg
StepHypRef Expression
1 elex 2735 . 2  |-  ( B  e.  V  ->  B  e.  _V )
2 vex 2730 . . . 4  |-  x  e. 
_V
32eliniseg 4949 . . 3  |-  ( B  e.  _V  ->  (
x  e.  ( `' A " { B } )  <->  x A B ) )
43abbi2dv 2364 . 2  |-  ( B  e.  _V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
51, 4syl 17 1  |-  ( B  e.  V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   {cab 2239   _Vcvv 2727   {csn 3544   class class class wbr 3920   `'ccnv 4579   "cima 4583
This theorem is referenced by:  dffr3  4952  dfse2  4953  dfpred2  23343  inisegn0  26306
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-br 3921  df-opab 3975  df-xp 4594  df-cnv 4596  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601
  Copyright terms: Public domain W3C validator